Two-qudit geometric phase evolution under dephasing
- Autores
- Oxman, Luis E.; Khoury, Antonio Z.; Lombardo, Fernando Cesar; Villar, Paula Ines
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, we study a bipartite system composed by a pair of entangled qudits under dephasing, showing how the dynamics can be decoupled into two main sectors. In one of them, the concurrence of the effective state needed to compute the geometric phase generally decays to zero at asymptotic times. Of course, an evolution restricted to this sector can occur or not, depending on the initial state. Among the possibilities, there is a maximally entangled qutrit state (MES) that undergoes a restricted evolution. In this case, instead of decaying to zero, the concurrence as well as the geometric phase signal a transition to an effective two-qubit MES at asymptotic times. Next, we obtain the analytic solution to the master equation for a general initial two-qutrit state, and identify a whole class of decoherence free states. The associated observables, evolving in the presence of the environment, are robust against decoherence regardless of the coupling constants and operating weights. Among them, we obtained all the MES states which are robust against decoherence. The enhanced stability properties around them provides a strategy to minimize the effects of the environment on fractional topological phases.
Fil: Oxman, Luis E.. Universidade Federal Fluminense; Brasil
Fil: Khoury, Antonio Z.. Universidade Federal Fluminense; Brasil
Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Villar, Paula Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina - Materia
-
DECOHERENCE
ENTANGLEMENT
GEOMETRIC PHASES
QUDITS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/96753
Ver los metadatos del registro completo
id |
CONICETDig_0eb6e2c9710732cdba4058be62b58bb0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/96753 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Two-qudit geometric phase evolution under dephasingOxman, Luis E.Khoury, Antonio Z.Lombardo, Fernando CesarVillar, Paula InesDECOHERENCEENTANGLEMENTGEOMETRIC PHASESQUDITShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this work, we study a bipartite system composed by a pair of entangled qudits under dephasing, showing how the dynamics can be decoupled into two main sectors. In one of them, the concurrence of the effective state needed to compute the geometric phase generally decays to zero at asymptotic times. Of course, an evolution restricted to this sector can occur or not, depending on the initial state. Among the possibilities, there is a maximally entangled qutrit state (MES) that undergoes a restricted evolution. In this case, instead of decaying to zero, the concurrence as well as the geometric phase signal a transition to an effective two-qubit MES at asymptotic times. Next, we obtain the analytic solution to the master equation for a general initial two-qutrit state, and identify a whole class of decoherence free states. The associated observables, evolving in the presence of the environment, are robust against decoherence regardless of the coupling constants and operating weights. Among them, we obtained all the MES states which are robust against decoherence. The enhanced stability properties around them provides a strategy to minimize the effects of the environment on fractional topological phases.Fil: Oxman, Luis E.. Universidade Federal Fluminense; BrasilFil: Khoury, Antonio Z.. Universidade Federal Fluminense; BrasilFil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Villar, Paula Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaAcademic Press Inc Elsevier Science2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96753Oxman, Luis E.; Khoury, Antonio Z.; Lombardo, Fernando Cesar; Villar, Paula Ines; Two-qudit geometric phase evolution under dephasing; Academic Press Inc Elsevier Science; Annals of Physics (New York); 390; 3-2018; 159-1790003-4916CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003491618300071info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aop.2018.01.005info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1704.01999info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:23:16Zoai:ri.conicet.gov.ar:11336/96753instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:23:16.465CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Two-qudit geometric phase evolution under dephasing |
title |
Two-qudit geometric phase evolution under dephasing |
spellingShingle |
Two-qudit geometric phase evolution under dephasing Oxman, Luis E. DECOHERENCE ENTANGLEMENT GEOMETRIC PHASES QUDITS |
title_short |
Two-qudit geometric phase evolution under dephasing |
title_full |
Two-qudit geometric phase evolution under dephasing |
title_fullStr |
Two-qudit geometric phase evolution under dephasing |
title_full_unstemmed |
Two-qudit geometric phase evolution under dephasing |
title_sort |
Two-qudit geometric phase evolution under dephasing |
dc.creator.none.fl_str_mv |
Oxman, Luis E. Khoury, Antonio Z. Lombardo, Fernando Cesar Villar, Paula Ines |
author |
Oxman, Luis E. |
author_facet |
Oxman, Luis E. Khoury, Antonio Z. Lombardo, Fernando Cesar Villar, Paula Ines |
author_role |
author |
author2 |
Khoury, Antonio Z. Lombardo, Fernando Cesar Villar, Paula Ines |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DECOHERENCE ENTANGLEMENT GEOMETRIC PHASES QUDITS |
topic |
DECOHERENCE ENTANGLEMENT GEOMETRIC PHASES QUDITS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work, we study a bipartite system composed by a pair of entangled qudits under dephasing, showing how the dynamics can be decoupled into two main sectors. In one of them, the concurrence of the effective state needed to compute the geometric phase generally decays to zero at asymptotic times. Of course, an evolution restricted to this sector can occur or not, depending on the initial state. Among the possibilities, there is a maximally entangled qutrit state (MES) that undergoes a restricted evolution. In this case, instead of decaying to zero, the concurrence as well as the geometric phase signal a transition to an effective two-qubit MES at asymptotic times. Next, we obtain the analytic solution to the master equation for a general initial two-qutrit state, and identify a whole class of decoherence free states. The associated observables, evolving in the presence of the environment, are robust against decoherence regardless of the coupling constants and operating weights. Among them, we obtained all the MES states which are robust against decoherence. The enhanced stability properties around them provides a strategy to minimize the effects of the environment on fractional topological phases. Fil: Oxman, Luis E.. Universidade Federal Fluminense; Brasil Fil: Khoury, Antonio Z.. Universidade Federal Fluminense; Brasil Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Villar, Paula Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina |
description |
In this work, we study a bipartite system composed by a pair of entangled qudits under dephasing, showing how the dynamics can be decoupled into two main sectors. In one of them, the concurrence of the effective state needed to compute the geometric phase generally decays to zero at asymptotic times. Of course, an evolution restricted to this sector can occur or not, depending on the initial state. Among the possibilities, there is a maximally entangled qutrit state (MES) that undergoes a restricted evolution. In this case, instead of decaying to zero, the concurrence as well as the geometric phase signal a transition to an effective two-qubit MES at asymptotic times. Next, we obtain the analytic solution to the master equation for a general initial two-qutrit state, and identify a whole class of decoherence free states. The associated observables, evolving in the presence of the environment, are robust against decoherence regardless of the coupling constants and operating weights. Among them, we obtained all the MES states which are robust against decoherence. The enhanced stability properties around them provides a strategy to minimize the effects of the environment on fractional topological phases. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/96753 Oxman, Luis E.; Khoury, Antonio Z.; Lombardo, Fernando Cesar; Villar, Paula Ines; Two-qudit geometric phase evolution under dephasing; Academic Press Inc Elsevier Science; Annals of Physics (New York); 390; 3-2018; 159-179 0003-4916 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/96753 |
identifier_str_mv |
Oxman, Luis E.; Khoury, Antonio Z.; Lombardo, Fernando Cesar; Villar, Paula Ines; Two-qudit geometric phase evolution under dephasing; Academic Press Inc Elsevier Science; Annals of Physics (New York); 390; 3-2018; 159-179 0003-4916 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003491618300071 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aop.2018.01.005 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1704.01999 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981284418158592 |
score |
12.48226 |