An efficient use of X-ray information, homology modeling, molecular dynamics and knowledge-based docking techniques to predict protein-monosaccharide complexes
- Autores
- Blanco Capurro, Juan Ignacio; Di Paola, Matías Ezequiel; Gamarra, Marcelo Daniel; Marti, Marcelo Adrian; Modenutti, Carlos Pablo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Unraveling the structure of lectin-carbohydrate complexes is vital for understanding key biological recognition processes and development of glycomimetic drugs. Molecular Docking application to predict them is challenging due to their low affinity, hydrophilic nature and ligand conformational diversity. In the last decade several strategies, such as the inclusion of glycan conformation specific scoring functions or our developed solvent-site biased method, have improved carbohydrate docking performance but significant challenges remain, in particular, those related to receptor conformational diversity. In the present work we have analyzed conventional and solvent-site biased autodock4 performance concerning receptor conformational diversity as derived from different crystal structures (apo and holo), Molecular Dynamics snapshots and Homology-based models, for 14 different lectin-monosaccharide complexes. Our results show that both conventional and biased docking yield accurate lectin-monosaccharide complexes, starting from either apo or homology-based structures, even when only moderate (45%) sequence identity templates are available. An essential element for success is a proper combination of a middle-sized (10-100 structures) conformational ensemble, derived either from Molecular dynamics or multiple homology model building. Consistent with our previous works, results show that solvent-site biased methods improve overall performance, but that results are still highly system dependent. Finally, our results also show that docking can select the correct receptor structure within the ensemble, underscoring the relevance of joint evaluation of both ligand pose and receptor conformation.
Fil: Blanco Capurro, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Di Paola, Matías Ezequiel. Universidad de Buenos Aires; Argentina
Fil: Gamarra, Marcelo Daniel. Universidad de Buenos Aires; Argentina
Fil: Marti, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Modenutti, Carlos Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
CARBOHYDRATES
DOCKING
HOMOLOGY-MODELING
LECTIN
MOLECULAR DYNAMICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/97997
Ver los metadatos del registro completo
id |
CONICETDig_0e69275cdb3e72244ad5d3e0a2ec3019 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/97997 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An efficient use of X-ray information, homology modeling, molecular dynamics and knowledge-based docking techniques to predict protein-monosaccharide complexesBlanco Capurro, Juan IgnacioDi Paola, Matías EzequielGamarra, Marcelo DanielMarti, Marcelo AdrianModenutti, Carlos PabloCARBOHYDRATESDOCKINGHOMOLOGY-MODELINGLECTINMOLECULAR DYNAMICShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Unraveling the structure of lectin-carbohydrate complexes is vital for understanding key biological recognition processes and development of glycomimetic drugs. Molecular Docking application to predict them is challenging due to their low affinity, hydrophilic nature and ligand conformational diversity. In the last decade several strategies, such as the inclusion of glycan conformation specific scoring functions or our developed solvent-site biased method, have improved carbohydrate docking performance but significant challenges remain, in particular, those related to receptor conformational diversity. In the present work we have analyzed conventional and solvent-site biased autodock4 performance concerning receptor conformational diversity as derived from different crystal structures (apo and holo), Molecular Dynamics snapshots and Homology-based models, for 14 different lectin-monosaccharide complexes. Our results show that both conventional and biased docking yield accurate lectin-monosaccharide complexes, starting from either apo or homology-based structures, even when only moderate (45%) sequence identity templates are available. An essential element for success is a proper combination of a middle-sized (10-100 structures) conformational ensemble, derived either from Molecular dynamics or multiple homology model building. Consistent with our previous works, results show that solvent-site biased methods improve overall performance, but that results are still highly system dependent. Finally, our results also show that docking can select the correct receptor structure within the ensemble, underscoring the relevance of joint evaluation of both ligand pose and receptor conformation.Fil: Blanco Capurro, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Di Paola, Matías Ezequiel. Universidad de Buenos Aires; ArgentinaFil: Gamarra, Marcelo Daniel. Universidad de Buenos Aires; ArgentinaFil: Marti, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Modenutti, Carlos Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaOxford University Press2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97997Blanco Capurro, Juan Ignacio; Di Paola, Matías Ezequiel; Gamarra, Marcelo Daniel; Marti, Marcelo Adrian; Modenutti, Carlos Pablo; An efficient use of X-ray information, homology modeling, molecular dynamics and knowledge-based docking techniques to predict protein-monosaccharide complexes; Oxford University Press; Glycobiology; 29; 2; 11-2018; 124-1360959-6658CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/glycob/article/29/2/124/5165567info:eu-repo/semantics/altIdentifier/doi/10.1093/glycob/cwy102info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:32Zoai:ri.conicet.gov.ar:11336/97997instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:32.329CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An efficient use of X-ray information, homology modeling, molecular dynamics and knowledge-based docking techniques to predict protein-monosaccharide complexes |
title |
An efficient use of X-ray information, homology modeling, molecular dynamics and knowledge-based docking techniques to predict protein-monosaccharide complexes |
spellingShingle |
An efficient use of X-ray information, homology modeling, molecular dynamics and knowledge-based docking techniques to predict protein-monosaccharide complexes Blanco Capurro, Juan Ignacio CARBOHYDRATES DOCKING HOMOLOGY-MODELING LECTIN MOLECULAR DYNAMICS |
title_short |
An efficient use of X-ray information, homology modeling, molecular dynamics and knowledge-based docking techniques to predict protein-monosaccharide complexes |
title_full |
An efficient use of X-ray information, homology modeling, molecular dynamics and knowledge-based docking techniques to predict protein-monosaccharide complexes |
title_fullStr |
An efficient use of X-ray information, homology modeling, molecular dynamics and knowledge-based docking techniques to predict protein-monosaccharide complexes |
title_full_unstemmed |
An efficient use of X-ray information, homology modeling, molecular dynamics and knowledge-based docking techniques to predict protein-monosaccharide complexes |
title_sort |
An efficient use of X-ray information, homology modeling, molecular dynamics and knowledge-based docking techniques to predict protein-monosaccharide complexes |
dc.creator.none.fl_str_mv |
Blanco Capurro, Juan Ignacio Di Paola, Matías Ezequiel Gamarra, Marcelo Daniel Marti, Marcelo Adrian Modenutti, Carlos Pablo |
author |
Blanco Capurro, Juan Ignacio |
author_facet |
Blanco Capurro, Juan Ignacio Di Paola, Matías Ezequiel Gamarra, Marcelo Daniel Marti, Marcelo Adrian Modenutti, Carlos Pablo |
author_role |
author |
author2 |
Di Paola, Matías Ezequiel Gamarra, Marcelo Daniel Marti, Marcelo Adrian Modenutti, Carlos Pablo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
CARBOHYDRATES DOCKING HOMOLOGY-MODELING LECTIN MOLECULAR DYNAMICS |
topic |
CARBOHYDRATES DOCKING HOMOLOGY-MODELING LECTIN MOLECULAR DYNAMICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Unraveling the structure of lectin-carbohydrate complexes is vital for understanding key biological recognition processes and development of glycomimetic drugs. Molecular Docking application to predict them is challenging due to their low affinity, hydrophilic nature and ligand conformational diversity. In the last decade several strategies, such as the inclusion of glycan conformation specific scoring functions or our developed solvent-site biased method, have improved carbohydrate docking performance but significant challenges remain, in particular, those related to receptor conformational diversity. In the present work we have analyzed conventional and solvent-site biased autodock4 performance concerning receptor conformational diversity as derived from different crystal structures (apo and holo), Molecular Dynamics snapshots and Homology-based models, for 14 different lectin-monosaccharide complexes. Our results show that both conventional and biased docking yield accurate lectin-monosaccharide complexes, starting from either apo or homology-based structures, even when only moderate (45%) sequence identity templates are available. An essential element for success is a proper combination of a middle-sized (10-100 structures) conformational ensemble, derived either from Molecular dynamics or multiple homology model building. Consistent with our previous works, results show that solvent-site biased methods improve overall performance, but that results are still highly system dependent. Finally, our results also show that docking can select the correct receptor structure within the ensemble, underscoring the relevance of joint evaluation of both ligand pose and receptor conformation. Fil: Blanco Capurro, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Di Paola, Matías Ezequiel. Universidad de Buenos Aires; Argentina Fil: Gamarra, Marcelo Daniel. Universidad de Buenos Aires; Argentina Fil: Marti, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Modenutti, Carlos Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Unraveling the structure of lectin-carbohydrate complexes is vital for understanding key biological recognition processes and development of glycomimetic drugs. Molecular Docking application to predict them is challenging due to their low affinity, hydrophilic nature and ligand conformational diversity. In the last decade several strategies, such as the inclusion of glycan conformation specific scoring functions or our developed solvent-site biased method, have improved carbohydrate docking performance but significant challenges remain, in particular, those related to receptor conformational diversity. In the present work we have analyzed conventional and solvent-site biased autodock4 performance concerning receptor conformational diversity as derived from different crystal structures (apo and holo), Molecular Dynamics snapshots and Homology-based models, for 14 different lectin-monosaccharide complexes. Our results show that both conventional and biased docking yield accurate lectin-monosaccharide complexes, starting from either apo or homology-based structures, even when only moderate (45%) sequence identity templates are available. An essential element for success is a proper combination of a middle-sized (10-100 structures) conformational ensemble, derived either from Molecular dynamics or multiple homology model building. Consistent with our previous works, results show that solvent-site biased methods improve overall performance, but that results are still highly system dependent. Finally, our results also show that docking can select the correct receptor structure within the ensemble, underscoring the relevance of joint evaluation of both ligand pose and receptor conformation. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/97997 Blanco Capurro, Juan Ignacio; Di Paola, Matías Ezequiel; Gamarra, Marcelo Daniel; Marti, Marcelo Adrian; Modenutti, Carlos Pablo; An efficient use of X-ray information, homology modeling, molecular dynamics and knowledge-based docking techniques to predict protein-monosaccharide complexes; Oxford University Press; Glycobiology; 29; 2; 11-2018; 124-136 0959-6658 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/97997 |
identifier_str_mv |
Blanco Capurro, Juan Ignacio; Di Paola, Matías Ezequiel; Gamarra, Marcelo Daniel; Marti, Marcelo Adrian; Modenutti, Carlos Pablo; An efficient use of X-ray information, homology modeling, molecular dynamics and knowledge-based docking techniques to predict protein-monosaccharide complexes; Oxford University Press; Glycobiology; 29; 2; 11-2018; 124-136 0959-6658 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/glycob/article/29/2/124/5165567 info:eu-repo/semantics/altIdentifier/doi/10.1093/glycob/cwy102 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613031320879104 |
score |
13.069144 |