Lifshitz black holes in Brans-Dicke theory

Autores
Maeda, Hideki; Giribet, Gaston Enrique
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present an exact asymptotically Lifshitz black hole solution in Brans-Dicke theory of gravity in arbitrary n(≥ 3) dimensions in presence of a power-law potential. In this solution, the dynamical exponent z is determined in terms of the Brans-Dicke parameter ! and n. Asymptotic Lifshitz condition at infinity requires z > 1, which corresponds to ?(n ? 1)/(n ? 2) ≥ w ?n/(n ? 1). On the other hand, the no-ghost condition for the scalar field in the Einstein frame requires 0 < z ≤ 2(n ? 2)/(n ? 3). We compute the Hawking temperature of the black hole solution and discuss the problems encountered and the proposals in defining its thermodynamic properties. A generalized solution charged under the Maxwell field is also presented. © 2011 SISSA.
Fil: Maeda, Hideki. Centro de Estudios Cientificos; Chile
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Ads-Cft Correspondence
Black Holes
Classical Theories of Gravity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/56758

id CONICETDig_0e55b81e2c0dae1c439b67b8950561ea
oai_identifier_str oai:ri.conicet.gov.ar:11336/56758
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lifshitz black holes in Brans-Dicke theoryMaeda, HidekiGiribet, Gaston EnriqueAds-Cft CorrespondenceBlack HolesClassical Theories of Gravityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present an exact asymptotically Lifshitz black hole solution in Brans-Dicke theory of gravity in arbitrary n(≥ 3) dimensions in presence of a power-law potential. In this solution, the dynamical exponent z is determined in terms of the Brans-Dicke parameter ! and n. Asymptotic Lifshitz condition at infinity requires z > 1, which corresponds to ?(n ? 1)/(n ? 2) ≥ w ?n/(n ? 1). On the other hand, the no-ghost condition for the scalar field in the Einstein frame requires 0 < z ≤ 2(n ? 2)/(n ? 3). We compute the Hawking temperature of the black hole solution and discuss the problems encountered and the proposals in defining its thermodynamic properties. A generalized solution charged under the Maxwell field is also presented. © 2011 SISSA.Fil: Maeda, Hideki. Centro de Estudios Cientificos; ChileFil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaSpringer2011-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56758Maeda, Hideki; Giribet, Gaston Enrique; Lifshitz black holes in Brans-Dicke theory; Springer; Journal of High Energy Physics; 2011; 11; 11-2011; 15-361126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP11(2011)015info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP11(2011)015info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1105.1331info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:27:54Zoai:ri.conicet.gov.ar:11336/56758instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:27:54.815CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lifshitz black holes in Brans-Dicke theory
title Lifshitz black holes in Brans-Dicke theory
spellingShingle Lifshitz black holes in Brans-Dicke theory
Maeda, Hideki
Ads-Cft Correspondence
Black Holes
Classical Theories of Gravity
title_short Lifshitz black holes in Brans-Dicke theory
title_full Lifshitz black holes in Brans-Dicke theory
title_fullStr Lifshitz black holes in Brans-Dicke theory
title_full_unstemmed Lifshitz black holes in Brans-Dicke theory
title_sort Lifshitz black holes in Brans-Dicke theory
dc.creator.none.fl_str_mv Maeda, Hideki
Giribet, Gaston Enrique
author Maeda, Hideki
author_facet Maeda, Hideki
Giribet, Gaston Enrique
author_role author
author2 Giribet, Gaston Enrique
author2_role author
dc.subject.none.fl_str_mv Ads-Cft Correspondence
Black Holes
Classical Theories of Gravity
topic Ads-Cft Correspondence
Black Holes
Classical Theories of Gravity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present an exact asymptotically Lifshitz black hole solution in Brans-Dicke theory of gravity in arbitrary n(≥ 3) dimensions in presence of a power-law potential. In this solution, the dynamical exponent z is determined in terms of the Brans-Dicke parameter ! and n. Asymptotic Lifshitz condition at infinity requires z > 1, which corresponds to ?(n ? 1)/(n ? 2) ≥ w ?n/(n ? 1). On the other hand, the no-ghost condition for the scalar field in the Einstein frame requires 0 < z ≤ 2(n ? 2)/(n ? 3). We compute the Hawking temperature of the black hole solution and discuss the problems encountered and the proposals in defining its thermodynamic properties. A generalized solution charged under the Maxwell field is also presented. © 2011 SISSA.
Fil: Maeda, Hideki. Centro de Estudios Cientificos; Chile
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description We present an exact asymptotically Lifshitz black hole solution in Brans-Dicke theory of gravity in arbitrary n(≥ 3) dimensions in presence of a power-law potential. In this solution, the dynamical exponent z is determined in terms of the Brans-Dicke parameter ! and n. Asymptotic Lifshitz condition at infinity requires z > 1, which corresponds to ?(n ? 1)/(n ? 2) ≥ w ?n/(n ? 1). On the other hand, the no-ghost condition for the scalar field in the Einstein frame requires 0 < z ≤ 2(n ? 2)/(n ? 3). We compute the Hawking temperature of the black hole solution and discuss the problems encountered and the proposals in defining its thermodynamic properties. A generalized solution charged under the Maxwell field is also presented. © 2011 SISSA.
publishDate 2011
dc.date.none.fl_str_mv 2011-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/56758
Maeda, Hideki; Giribet, Gaston Enrique; Lifshitz black holes in Brans-Dicke theory; Springer; Journal of High Energy Physics; 2011; 11; 11-2011; 15-36
1126-6708
CONICET Digital
CONICET
url http://hdl.handle.net/11336/56758
identifier_str_mv Maeda, Hideki; Giribet, Gaston Enrique; Lifshitz black holes in Brans-Dicke theory; Springer; Journal of High Energy Physics; 2011; 11; 11-2011; 15-36
1126-6708
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP11(2011)015
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP11(2011)015
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1105.1331
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614281609347072
score 13.070432