Evaluation of Pd-In Supported Catalysts for Water Nitrate Abatement in a Fixed-Bed Continuous Reactor
- Autores
- Mendow, Gustavo; Marchesini, Fernanda Albana; Miro, Eduardo Ernesto; Querini, Carlos Alberto
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The increasing pollution of natural drinking-water sources brings about the development of new emerging technologies and processes for water remediation. In this work, the catalytic reduction of contaminated water containing nitrates (100 mg/L) was studied in a bubble column fixed-bed reactor, working at room temperature and atmospheric pressure and using hydrogen as a reducing agent. The activity and selectivity of these catalysts were evaluated under different reaction conditions (hydrogen flow, water flow, pH, acidifying agent) and verified in a stirred reactor, operating under batch conditions. On SiO2 supported catalysts, it was found that the nitrate conversion increased as theH2 flow was increased, while theN2 selectivity remained almost unaffected. On the other hand, in Al2O3 supported catalysts, an increase in H2 flow improved activity but worsened nitrogen selectivity. The best conversions and selectivity results were obtained when the feed solution was acidified with CO2. Very pronounced pH gradients or high amounts of OH- in the catalytic bed promoted nitrites and ammonium formation, provoking a notorious decrease of N2 selectivity. The highest conversion (100%) was obtained with the Al2O3 supported catalyst aged in the reaction. However, the selectivity to N2 under these conditions was 72%. On the other hand, the best selectivity to N2 was 97%, obtained with the aged SiO2 supported catalyst. In this case, the nitrate conversion was 30%. Characterization results showed that the metallic composition of the catalysts changed both after reduction and after contacting the liquid reaction media. These changes were observed by X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR). The catalysts stability was studied and discussed.
Fil: Mendow, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Marchesini, Fernanda Albana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Miro, Eduardo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Querini, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina - Materia
- Nitrates Abatement
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/54018
Ver los metadatos del registro completo
id |
CONICETDig_0e52f503cbd1e21be374a8fa87acd358 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/54018 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Evaluation of Pd-In Supported Catalysts for Water Nitrate Abatement in a Fixed-Bed Continuous ReactorMendow, GustavoMarchesini, Fernanda AlbanaMiro, Eduardo ErnestoQuerini, Carlos AlbertoNitrates Abatementhttps://purl.org/becyt/ford/2.7https://purl.org/becyt/ford/2The increasing pollution of natural drinking-water sources brings about the development of new emerging technologies and processes for water remediation. In this work, the catalytic reduction of contaminated water containing nitrates (100 mg/L) was studied in a bubble column fixed-bed reactor, working at room temperature and atmospheric pressure and using hydrogen as a reducing agent. The activity and selectivity of these catalysts were evaluated under different reaction conditions (hydrogen flow, water flow, pH, acidifying agent) and verified in a stirred reactor, operating under batch conditions. On SiO2 supported catalysts, it was found that the nitrate conversion increased as theH2 flow was increased, while theN2 selectivity remained almost unaffected. On the other hand, in Al2O3 supported catalysts, an increase in H2 flow improved activity but worsened nitrogen selectivity. The best conversions and selectivity results were obtained when the feed solution was acidified with CO2. Very pronounced pH gradients or high amounts of OH- in the catalytic bed promoted nitrites and ammonium formation, provoking a notorious decrease of N2 selectivity. The highest conversion (100%) was obtained with the Al2O3 supported catalyst aged in the reaction. However, the selectivity to N2 under these conditions was 72%. On the other hand, the best selectivity to N2 was 97%, obtained with the aged SiO2 supported catalyst. In this case, the nitrate conversion was 30%. Characterization results showed that the metallic composition of the catalysts changed both after reduction and after contacting the liquid reaction media. These changes were observed by X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR). The catalysts stability was studied and discussed.Fil: Mendow, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Marchesini, Fernanda Albana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Miro, Eduardo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Querini, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaAmerican Chemical Society2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54018Mendow, Gustavo; Marchesini, Fernanda Albana; Miro, Eduardo Ernesto; Querini, Carlos Alberto; Evaluation of Pd-In Supported Catalysts for Water Nitrate Abatement in a Fixed-Bed Continuous Reactor; American Chemical Society; Industrial & Engineering Chemical Research; 50; 1-2011; 1911-19200888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/ie102080winfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:43Zoai:ri.conicet.gov.ar:11336/54018instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:43.883CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Evaluation of Pd-In Supported Catalysts for Water Nitrate Abatement in a Fixed-Bed Continuous Reactor |
title |
Evaluation of Pd-In Supported Catalysts for Water Nitrate Abatement in a Fixed-Bed Continuous Reactor |
spellingShingle |
Evaluation of Pd-In Supported Catalysts for Water Nitrate Abatement in a Fixed-Bed Continuous Reactor Mendow, Gustavo Nitrates Abatement |
title_short |
Evaluation of Pd-In Supported Catalysts for Water Nitrate Abatement in a Fixed-Bed Continuous Reactor |
title_full |
Evaluation of Pd-In Supported Catalysts for Water Nitrate Abatement in a Fixed-Bed Continuous Reactor |
title_fullStr |
Evaluation of Pd-In Supported Catalysts for Water Nitrate Abatement in a Fixed-Bed Continuous Reactor |
title_full_unstemmed |
Evaluation of Pd-In Supported Catalysts for Water Nitrate Abatement in a Fixed-Bed Continuous Reactor |
title_sort |
Evaluation of Pd-In Supported Catalysts for Water Nitrate Abatement in a Fixed-Bed Continuous Reactor |
dc.creator.none.fl_str_mv |
Mendow, Gustavo Marchesini, Fernanda Albana Miro, Eduardo Ernesto Querini, Carlos Alberto |
author |
Mendow, Gustavo |
author_facet |
Mendow, Gustavo Marchesini, Fernanda Albana Miro, Eduardo Ernesto Querini, Carlos Alberto |
author_role |
author |
author2 |
Marchesini, Fernanda Albana Miro, Eduardo Ernesto Querini, Carlos Alberto |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Nitrates Abatement |
topic |
Nitrates Abatement |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.7 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The increasing pollution of natural drinking-water sources brings about the development of new emerging technologies and processes for water remediation. In this work, the catalytic reduction of contaminated water containing nitrates (100 mg/L) was studied in a bubble column fixed-bed reactor, working at room temperature and atmospheric pressure and using hydrogen as a reducing agent. The activity and selectivity of these catalysts were evaluated under different reaction conditions (hydrogen flow, water flow, pH, acidifying agent) and verified in a stirred reactor, operating under batch conditions. On SiO2 supported catalysts, it was found that the nitrate conversion increased as theH2 flow was increased, while theN2 selectivity remained almost unaffected. On the other hand, in Al2O3 supported catalysts, an increase in H2 flow improved activity but worsened nitrogen selectivity. The best conversions and selectivity results were obtained when the feed solution was acidified with CO2. Very pronounced pH gradients or high amounts of OH- in the catalytic bed promoted nitrites and ammonium formation, provoking a notorious decrease of N2 selectivity. The highest conversion (100%) was obtained with the Al2O3 supported catalyst aged in the reaction. However, the selectivity to N2 under these conditions was 72%. On the other hand, the best selectivity to N2 was 97%, obtained with the aged SiO2 supported catalyst. In this case, the nitrate conversion was 30%. Characterization results showed that the metallic composition of the catalysts changed both after reduction and after contacting the liquid reaction media. These changes were observed by X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR). The catalysts stability was studied and discussed. Fil: Mendow, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina Fil: Marchesini, Fernanda Albana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina Fil: Miro, Eduardo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina Fil: Querini, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina |
description |
The increasing pollution of natural drinking-water sources brings about the development of new emerging technologies and processes for water remediation. In this work, the catalytic reduction of contaminated water containing nitrates (100 mg/L) was studied in a bubble column fixed-bed reactor, working at room temperature and atmospheric pressure and using hydrogen as a reducing agent. The activity and selectivity of these catalysts were evaluated under different reaction conditions (hydrogen flow, water flow, pH, acidifying agent) and verified in a stirred reactor, operating under batch conditions. On SiO2 supported catalysts, it was found that the nitrate conversion increased as theH2 flow was increased, while theN2 selectivity remained almost unaffected. On the other hand, in Al2O3 supported catalysts, an increase in H2 flow improved activity but worsened nitrogen selectivity. The best conversions and selectivity results were obtained when the feed solution was acidified with CO2. Very pronounced pH gradients or high amounts of OH- in the catalytic bed promoted nitrites and ammonium formation, provoking a notorious decrease of N2 selectivity. The highest conversion (100%) was obtained with the Al2O3 supported catalyst aged in the reaction. However, the selectivity to N2 under these conditions was 72%. On the other hand, the best selectivity to N2 was 97%, obtained with the aged SiO2 supported catalyst. In this case, the nitrate conversion was 30%. Characterization results showed that the metallic composition of the catalysts changed both after reduction and after contacting the liquid reaction media. These changes were observed by X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR). The catalysts stability was studied and discussed. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/54018 Mendow, Gustavo; Marchesini, Fernanda Albana; Miro, Eduardo Ernesto; Querini, Carlos Alberto; Evaluation of Pd-In Supported Catalysts for Water Nitrate Abatement in a Fixed-Bed Continuous Reactor; American Chemical Society; Industrial & Engineering Chemical Research; 50; 1-2011; 1911-1920 0888-5885 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/54018 |
identifier_str_mv |
Mendow, Gustavo; Marchesini, Fernanda Albana; Miro, Eduardo Ernesto; Querini, Carlos Alberto; Evaluation of Pd-In Supported Catalysts for Water Nitrate Abatement in a Fixed-Bed Continuous Reactor; American Chemical Society; Industrial & Engineering Chemical Research; 50; 1-2011; 1911-1920 0888-5885 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/ie102080w |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614509520486400 |
score |
13.070432 |