A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina
- Autores
- Hoyos, Laura Emilia; Cabido, Marcelo Ruben; Cingolani, Ana María
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Land-cover changes are driven by different combinations of biophysical, economic, and cultural drivers that are acting at different scales. We aimed to (1) analyze trends in land use and land cover changes (conversion, abandonment, forest persistence) in the dry Chaco in central Argentina (1979 to 2010), and (2) examine how physical and socio-economic drivers have influenced those changes. Based on Landsat data, we obtained the proportion of 16 classes of land cover changes for 81 individual circular samples. We performed a Principal Component Analysis (PCA) to identify the main trends of change across the whole region. To explore the relationships between the changes in land cover and drivers, we developed a GIS comprising thematic maps representing the different drivers. The drivers were first correlated with the two first PCA axes, and in a second approximation were subjected to multiple regression analyses. We obtained in this way the best model to explain each PCA axis. The highest conversion, as indicated by PCA axis 1, was experienced by flat areas close to roads and with the highest annual rainfall. Besides agricultural expansion that was triggered by precipitation increase as a major driver of forest conversion, changes that were observed during the period 1979-2010, may have also been influenced by several other driving forces acting at different spatial scales and contexts.
Fil: Hoyos, Laura Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Cabido, Marcelo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Cingolani, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina - Materia
-
LANDSAT
LAND-COVER
DRIVING FORCES
DEFORESTATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/86573
Ver los metadatos del registro completo
id |
CONICETDig_0e417a6b90955f20880c270f98c19722 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/86573 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of ArgentinaHoyos, Laura EmiliaCabido, Marcelo RubenCingolani, Ana MaríaLANDSATLAND-COVERDRIVING FORCESDEFORESTATIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Land-cover changes are driven by different combinations of biophysical, economic, and cultural drivers that are acting at different scales. We aimed to (1) analyze trends in land use and land cover changes (conversion, abandonment, forest persistence) in the dry Chaco in central Argentina (1979 to 2010), and (2) examine how physical and socio-economic drivers have influenced those changes. Based on Landsat data, we obtained the proportion of 16 classes of land cover changes for 81 individual circular samples. We performed a Principal Component Analysis (PCA) to identify the main trends of change across the whole region. To explore the relationships between the changes in land cover and drivers, we developed a GIS comprising thematic maps representing the different drivers. The drivers were first correlated with the two first PCA axes, and in a second approximation were subjected to multiple regression analyses. We obtained in this way the best model to explain each PCA axis. The highest conversion, as indicated by PCA axis 1, was experienced by flat areas close to roads and with the highest annual rainfall. Besides agricultural expansion that was triggered by precipitation increase as a major driver of forest conversion, changes that were observed during the period 1979-2010, may have also been influenced by several other driving forces acting at different spatial scales and contexts.Fil: Hoyos, Laura Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Cabido, Marcelo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Cingolani, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaMDPI AG2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86573Hoyos, Laura Emilia; Cabido, Marcelo Ruben; Cingolani, Ana María; A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina; MDPI AG; ISPRS International Journal of Geo-Information; 7; 5; 5-20182220-99642220-9964CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/2220-9964/7/5/170info:eu-repo/semantics/altIdentifier/doi/10.3390/ijgi7050170info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:11Zoai:ri.conicet.gov.ar:11336/86573instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:12.087CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina |
title |
A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina |
spellingShingle |
A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina Hoyos, Laura Emilia LANDSAT LAND-COVER DRIVING FORCES DEFORESTATION |
title_short |
A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina |
title_full |
A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina |
title_fullStr |
A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina |
title_full_unstemmed |
A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina |
title_sort |
A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina |
dc.creator.none.fl_str_mv |
Hoyos, Laura Emilia Cabido, Marcelo Ruben Cingolani, Ana María |
author |
Hoyos, Laura Emilia |
author_facet |
Hoyos, Laura Emilia Cabido, Marcelo Ruben Cingolani, Ana María |
author_role |
author |
author2 |
Cabido, Marcelo Ruben Cingolani, Ana María |
author2_role |
author author |
dc.subject.none.fl_str_mv |
LANDSAT LAND-COVER DRIVING FORCES DEFORESTATION |
topic |
LANDSAT LAND-COVER DRIVING FORCES DEFORESTATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Land-cover changes are driven by different combinations of biophysical, economic, and cultural drivers that are acting at different scales. We aimed to (1) analyze trends in land use and land cover changes (conversion, abandonment, forest persistence) in the dry Chaco in central Argentina (1979 to 2010), and (2) examine how physical and socio-economic drivers have influenced those changes. Based on Landsat data, we obtained the proportion of 16 classes of land cover changes for 81 individual circular samples. We performed a Principal Component Analysis (PCA) to identify the main trends of change across the whole region. To explore the relationships between the changes in land cover and drivers, we developed a GIS comprising thematic maps representing the different drivers. The drivers were first correlated with the two first PCA axes, and in a second approximation were subjected to multiple regression analyses. We obtained in this way the best model to explain each PCA axis. The highest conversion, as indicated by PCA axis 1, was experienced by flat areas close to roads and with the highest annual rainfall. Besides agricultural expansion that was triggered by precipitation increase as a major driver of forest conversion, changes that were observed during the period 1979-2010, may have also been influenced by several other driving forces acting at different spatial scales and contexts. Fil: Hoyos, Laura Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina Fil: Cabido, Marcelo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina Fil: Cingolani, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina |
description |
Land-cover changes are driven by different combinations of biophysical, economic, and cultural drivers that are acting at different scales. We aimed to (1) analyze trends in land use and land cover changes (conversion, abandonment, forest persistence) in the dry Chaco in central Argentina (1979 to 2010), and (2) examine how physical and socio-economic drivers have influenced those changes. Based on Landsat data, we obtained the proportion of 16 classes of land cover changes for 81 individual circular samples. We performed a Principal Component Analysis (PCA) to identify the main trends of change across the whole region. To explore the relationships between the changes in land cover and drivers, we developed a GIS comprising thematic maps representing the different drivers. The drivers were first correlated with the two first PCA axes, and in a second approximation were subjected to multiple regression analyses. We obtained in this way the best model to explain each PCA axis. The highest conversion, as indicated by PCA axis 1, was experienced by flat areas close to roads and with the highest annual rainfall. Besides agricultural expansion that was triggered by precipitation increase as a major driver of forest conversion, changes that were observed during the period 1979-2010, may have also been influenced by several other driving forces acting at different spatial scales and contexts. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/86573 Hoyos, Laura Emilia; Cabido, Marcelo Ruben; Cingolani, Ana María; A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina; MDPI AG; ISPRS International Journal of Geo-Information; 7; 5; 5-2018 2220-9964 2220-9964 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/86573 |
identifier_str_mv |
Hoyos, Laura Emilia; Cabido, Marcelo Ruben; Cingolani, Ana María; A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina; MDPI AG; ISPRS International Journal of Geo-Information; 7; 5; 5-2018 2220-9964 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/2220-9964/7/5/170 info:eu-repo/semantics/altIdentifier/doi/10.3390/ijgi7050170 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI AG |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613420409683968 |
score |
13.070432 |