A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina

Autores
Hoyos, Laura Emilia; Cabido, Marcelo Ruben; Cingolani, Ana María
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Land-cover changes are driven by different combinations of biophysical, economic, and cultural drivers that are acting at different scales. We aimed to (1) analyze trends in land use and land cover changes (conversion, abandonment, forest persistence) in the dry Chaco in central Argentina (1979 to 2010), and (2) examine how physical and socio-economic drivers have influenced those changes. Based on Landsat data, we obtained the proportion of 16 classes of land cover changes for 81 individual circular samples. We performed a Principal Component Analysis (PCA) to identify the main trends of change across the whole region. To explore the relationships between the changes in land cover and drivers, we developed a GIS comprising thematic maps representing the different drivers. The drivers were first correlated with the two first PCA axes, and in a second approximation were subjected to multiple regression analyses. We obtained in this way the best model to explain each PCA axis. The highest conversion, as indicated by PCA axis 1, was experienced by flat areas close to roads and with the highest annual rainfall. Besides agricultural expansion that was triggered by precipitation increase as a major driver of forest conversion, changes that were observed during the period 1979-2010, may have also been influenced by several other driving forces acting at different spatial scales and contexts.
Fil: Hoyos, Laura Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Cabido, Marcelo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Cingolani, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Materia
LANDSAT
LAND-COVER
DRIVING FORCES
DEFORESTATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/86573

id CONICETDig_0e417a6b90955f20880c270f98c19722
oai_identifier_str oai:ri.conicet.gov.ar:11336/86573
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of ArgentinaHoyos, Laura EmiliaCabido, Marcelo RubenCingolani, Ana MaríaLANDSATLAND-COVERDRIVING FORCESDEFORESTATIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Land-cover changes are driven by different combinations of biophysical, economic, and cultural drivers that are acting at different scales. We aimed to (1) analyze trends in land use and land cover changes (conversion, abandonment, forest persistence) in the dry Chaco in central Argentina (1979 to 2010), and (2) examine how physical and socio-economic drivers have influenced those changes. Based on Landsat data, we obtained the proportion of 16 classes of land cover changes for 81 individual circular samples. We performed a Principal Component Analysis (PCA) to identify the main trends of change across the whole region. To explore the relationships between the changes in land cover and drivers, we developed a GIS comprising thematic maps representing the different drivers. The drivers were first correlated with the two first PCA axes, and in a second approximation were subjected to multiple regression analyses. We obtained in this way the best model to explain each PCA axis. The highest conversion, as indicated by PCA axis 1, was experienced by flat areas close to roads and with the highest annual rainfall. Besides agricultural expansion that was triggered by precipitation increase as a major driver of forest conversion, changes that were observed during the period 1979-2010, may have also been influenced by several other driving forces acting at different spatial scales and contexts.Fil: Hoyos, Laura Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Cabido, Marcelo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Cingolani, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaMDPI AG2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86573Hoyos, Laura Emilia; Cabido, Marcelo Ruben; Cingolani, Ana María; A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina; MDPI AG; ISPRS International Journal of Geo-Information; 7; 5; 5-20182220-99642220-9964CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/2220-9964/7/5/170info:eu-repo/semantics/altIdentifier/doi/10.3390/ijgi7050170info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:11Zoai:ri.conicet.gov.ar:11336/86573instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:12.087CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina
title A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina
spellingShingle A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina
Hoyos, Laura Emilia
LANDSAT
LAND-COVER
DRIVING FORCES
DEFORESTATION
title_short A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina
title_full A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina
title_fullStr A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina
title_full_unstemmed A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina
title_sort A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina
dc.creator.none.fl_str_mv Hoyos, Laura Emilia
Cabido, Marcelo Ruben
Cingolani, Ana María
author Hoyos, Laura Emilia
author_facet Hoyos, Laura Emilia
Cabido, Marcelo Ruben
Cingolani, Ana María
author_role author
author2 Cabido, Marcelo Ruben
Cingolani, Ana María
author2_role author
author
dc.subject.none.fl_str_mv LANDSAT
LAND-COVER
DRIVING FORCES
DEFORESTATION
topic LANDSAT
LAND-COVER
DRIVING FORCES
DEFORESTATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Land-cover changes are driven by different combinations of biophysical, economic, and cultural drivers that are acting at different scales. We aimed to (1) analyze trends in land use and land cover changes (conversion, abandonment, forest persistence) in the dry Chaco in central Argentina (1979 to 2010), and (2) examine how physical and socio-economic drivers have influenced those changes. Based on Landsat data, we obtained the proportion of 16 classes of land cover changes for 81 individual circular samples. We performed a Principal Component Analysis (PCA) to identify the main trends of change across the whole region. To explore the relationships between the changes in land cover and drivers, we developed a GIS comprising thematic maps representing the different drivers. The drivers were first correlated with the two first PCA axes, and in a second approximation were subjected to multiple regression analyses. We obtained in this way the best model to explain each PCA axis. The highest conversion, as indicated by PCA axis 1, was experienced by flat areas close to roads and with the highest annual rainfall. Besides agricultural expansion that was triggered by precipitation increase as a major driver of forest conversion, changes that were observed during the period 1979-2010, may have also been influenced by several other driving forces acting at different spatial scales and contexts.
Fil: Hoyos, Laura Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Cabido, Marcelo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Cingolani, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
description Land-cover changes are driven by different combinations of biophysical, economic, and cultural drivers that are acting at different scales. We aimed to (1) analyze trends in land use and land cover changes (conversion, abandonment, forest persistence) in the dry Chaco in central Argentina (1979 to 2010), and (2) examine how physical and socio-economic drivers have influenced those changes. Based on Landsat data, we obtained the proportion of 16 classes of land cover changes for 81 individual circular samples. We performed a Principal Component Analysis (PCA) to identify the main trends of change across the whole region. To explore the relationships between the changes in land cover and drivers, we developed a GIS comprising thematic maps representing the different drivers. The drivers were first correlated with the two first PCA axes, and in a second approximation were subjected to multiple regression analyses. We obtained in this way the best model to explain each PCA axis. The highest conversion, as indicated by PCA axis 1, was experienced by flat areas close to roads and with the highest annual rainfall. Besides agricultural expansion that was triggered by precipitation increase as a major driver of forest conversion, changes that were observed during the period 1979-2010, may have also been influenced by several other driving forces acting at different spatial scales and contexts.
publishDate 2018
dc.date.none.fl_str_mv 2018-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/86573
Hoyos, Laura Emilia; Cabido, Marcelo Ruben; Cingolani, Ana María; A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina; MDPI AG; ISPRS International Journal of Geo-Information; 7; 5; 5-2018
2220-9964
2220-9964
CONICET Digital
CONICET
url http://hdl.handle.net/11336/86573
identifier_str_mv Hoyos, Laura Emilia; Cabido, Marcelo Ruben; Cingolani, Ana María; A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina; MDPI AG; ISPRS International Journal of Geo-Information; 7; 5; 5-2018
2220-9964
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/2220-9964/7/5/170
info:eu-repo/semantics/altIdentifier/doi/10.3390/ijgi7050170
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613420409683968
score 13.070432