A model for wave propagation in a composite solid matrix saturated by a single-phase fluid
- Autores
- Santos, Juan Enrique; Ravazzoli, Claudia Leonor; Carcione, Jose M.
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper presents a theory to describe wave propagation in a porous medium composed of twosolids saturated by a single-phase fluid for spatially variable porosity. This problem has beenpreviously solved for constant porosity when one of the solids is ice or clay, but that model is notuseful for most realistic situations. The equations for variable porosity are derived from the virtualwork principle, where the generalized coordinates are identified as the displacements of the twosolid phases and a new variable associated with the relative fluid flow, whose divergence is thechange in fluid content. The generalized forces are the fluid pressure and combinations of the stresstensor of each solid phase and the fluid pressure. The Lagrangian equations of motion are derivedfor the isotropic case and a theorem on the existence and uniqueness of their solution is given. Theplane wave analysis reveals the existence of three compressional and two shear waves. The theoryis applied to wave propagation in shaley sandstones showing that phase velocities of the faster P andS waves agree very well with experimental data for varying porosity and clay content. A simulationthrough a plane interface separating two frozen sandstones of different ice contents is presented.
Fil: Santos, Juan Enrique. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ravazzoli, Claudia Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia - Materia
-
Wave propagation
Composite porous matrix
Weakly coupled solids
Variable porosity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/241971
Ver los metadatos del registro completo
id |
CONICETDig_0e11faf5ca98a0fb829cab125a911724 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/241971 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A model for wave propagation in a composite solid matrix saturated by a single-phase fluidSantos, Juan EnriqueRavazzoli, Claudia LeonorCarcione, Jose M.Wave propagationComposite porous matrixWeakly coupled solidsVariable porosityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper presents a theory to describe wave propagation in a porous medium composed of twosolids saturated by a single-phase fluid for spatially variable porosity. This problem has beenpreviously solved for constant porosity when one of the solids is ice or clay, but that model is notuseful for most realistic situations. The equations for variable porosity are derived from the virtualwork principle, where the generalized coordinates are identified as the displacements of the twosolid phases and a new variable associated with the relative fluid flow, whose divergence is thechange in fluid content. The generalized forces are the fluid pressure and combinations of the stresstensor of each solid phase and the fluid pressure. The Lagrangian equations of motion are derivedfor the isotropic case and a theorem on the existence and uniqueness of their solution is given. Theplane wave analysis reveals the existence of three compressional and two shear waves. The theoryis applied to wave propagation in shaley sandstones showing that phase velocities of the faster P andS waves agree very well with experimental data for varying porosity and clay content. A simulationthrough a plane interface separating two frozen sandstones of different ice contents is presented.Fil: Santos, Juan Enrique. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ravazzoli, Claudia Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaJournal of Animal Ecology2004-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241971Santos, Juan Enrique; Ravazzoli, Claudia Leonor; Carcione, Jose M.; A model for wave propagation in a composite solid matrix saturated by a single-phase fluid; Journal of Animal Ecology; Journal of the Acoustical Society of America; 115; 6; 6-2004; 2749-27600001-49661520-8524CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1121/1.1710500info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/asa/jasa/article-abstract/115/6/2749/545949/A-model-for-wave-propagation-in-a-composite-solid?redirectedFrom=fulltextinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:10Zoai:ri.conicet.gov.ar:11336/241971instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:11.107CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A model for wave propagation in a composite solid matrix saturated by a single-phase fluid |
title |
A model for wave propagation in a composite solid matrix saturated by a single-phase fluid |
spellingShingle |
A model for wave propagation in a composite solid matrix saturated by a single-phase fluid Santos, Juan Enrique Wave propagation Composite porous matrix Weakly coupled solids Variable porosity |
title_short |
A model for wave propagation in a composite solid matrix saturated by a single-phase fluid |
title_full |
A model for wave propagation in a composite solid matrix saturated by a single-phase fluid |
title_fullStr |
A model for wave propagation in a composite solid matrix saturated by a single-phase fluid |
title_full_unstemmed |
A model for wave propagation in a composite solid matrix saturated by a single-phase fluid |
title_sort |
A model for wave propagation in a composite solid matrix saturated by a single-phase fluid |
dc.creator.none.fl_str_mv |
Santos, Juan Enrique Ravazzoli, Claudia Leonor Carcione, Jose M. |
author |
Santos, Juan Enrique |
author_facet |
Santos, Juan Enrique Ravazzoli, Claudia Leonor Carcione, Jose M. |
author_role |
author |
author2 |
Ravazzoli, Claudia Leonor Carcione, Jose M. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Wave propagation Composite porous matrix Weakly coupled solids Variable porosity |
topic |
Wave propagation Composite porous matrix Weakly coupled solids Variable porosity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper presents a theory to describe wave propagation in a porous medium composed of twosolids saturated by a single-phase fluid for spatially variable porosity. This problem has beenpreviously solved for constant porosity when one of the solids is ice or clay, but that model is notuseful for most realistic situations. The equations for variable porosity are derived from the virtualwork principle, where the generalized coordinates are identified as the displacements of the twosolid phases and a new variable associated with the relative fluid flow, whose divergence is thechange in fluid content. The generalized forces are the fluid pressure and combinations of the stresstensor of each solid phase and the fluid pressure. The Lagrangian equations of motion are derivedfor the isotropic case and a theorem on the existence and uniqueness of their solution is given. Theplane wave analysis reveals the existence of three compressional and two shear waves. The theoryis applied to wave propagation in shaley sandstones showing that phase velocities of the faster P andS waves agree very well with experimental data for varying porosity and clay content. A simulationthrough a plane interface separating two frozen sandstones of different ice contents is presented. Fil: Santos, Juan Enrique. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Ravazzoli, Claudia Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia |
description |
This paper presents a theory to describe wave propagation in a porous medium composed of twosolids saturated by a single-phase fluid for spatially variable porosity. This problem has beenpreviously solved for constant porosity when one of the solids is ice or clay, but that model is notuseful for most realistic situations. The equations for variable porosity are derived from the virtualwork principle, where the generalized coordinates are identified as the displacements of the twosolid phases and a new variable associated with the relative fluid flow, whose divergence is thechange in fluid content. The generalized forces are the fluid pressure and combinations of the stresstensor of each solid phase and the fluid pressure. The Lagrangian equations of motion are derivedfor the isotropic case and a theorem on the existence and uniqueness of their solution is given. Theplane wave analysis reveals the existence of three compressional and two shear waves. The theoryis applied to wave propagation in shaley sandstones showing that phase velocities of the faster P andS waves agree very well with experimental data for varying porosity and clay content. A simulationthrough a plane interface separating two frozen sandstones of different ice contents is presented. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/241971 Santos, Juan Enrique; Ravazzoli, Claudia Leonor; Carcione, Jose M.; A model for wave propagation in a composite solid matrix saturated by a single-phase fluid; Journal of Animal Ecology; Journal of the Acoustical Society of America; 115; 6; 6-2004; 2749-2760 0001-4966 1520-8524 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/241971 |
identifier_str_mv |
Santos, Juan Enrique; Ravazzoli, Claudia Leonor; Carcione, Jose M.; A model for wave propagation in a composite solid matrix saturated by a single-phase fluid; Journal of Animal Ecology; Journal of the Acoustical Society of America; 115; 6; 6-2004; 2749-2760 0001-4966 1520-8524 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1121/1.1710500 info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/asa/jasa/article-abstract/115/6/2749/545949/A-model-for-wave-propagation-in-a-composite-solid?redirectedFrom=fulltext |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Journal of Animal Ecology |
publisher.none.fl_str_mv |
Journal of Animal Ecology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613757444030464 |
score |
13.070432 |