A model for wave propagation in a composite solid matrix saturated by a single-phase fluid

Autores
Santos, Juan Enrique; Ravazzoli, Claudia Leonor; Carcione, Jose M.
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper presents a theory to describe wave propagation in a porous medium composed of twosolids saturated by a single-phase fluid for spatially variable porosity. This problem has beenpreviously solved for constant porosity when one of the solids is ice or clay, but that model is notuseful for most realistic situations. The equations for variable porosity are derived from the virtualwork principle, where the generalized coordinates are identified as the displacements of the twosolid phases and a new variable associated with the relative fluid flow, whose divergence is thechange in fluid content. The generalized forces are the fluid pressure and combinations of the stresstensor of each solid phase and the fluid pressure. The Lagrangian equations of motion are derivedfor the isotropic case and a theorem on the existence and uniqueness of their solution is given. Theplane wave analysis reveals the existence of three compressional and two shear waves. The theoryis applied to wave propagation in shaley sandstones showing that phase velocities of the faster P andS waves agree very well with experimental data for varying porosity and clay content. A simulationthrough a plane interface separating two frozen sandstones of different ice contents is presented.
Fil: Santos, Juan Enrique. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ravazzoli, Claudia Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Materia
Wave propagation
Composite porous matrix
Weakly coupled solids
Variable porosity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/241971

id CONICETDig_0e11faf5ca98a0fb829cab125a911724
oai_identifier_str oai:ri.conicet.gov.ar:11336/241971
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A model for wave propagation in a composite solid matrix saturated by a single-phase fluidSantos, Juan EnriqueRavazzoli, Claudia LeonorCarcione, Jose M.Wave propagationComposite porous matrixWeakly coupled solidsVariable porosityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper presents a theory to describe wave propagation in a porous medium composed of twosolids saturated by a single-phase fluid for spatially variable porosity. This problem has beenpreviously solved for constant porosity when one of the solids is ice or clay, but that model is notuseful for most realistic situations. The equations for variable porosity are derived from the virtualwork principle, where the generalized coordinates are identified as the displacements of the twosolid phases and a new variable associated with the relative fluid flow, whose divergence is thechange in fluid content. The generalized forces are the fluid pressure and combinations of the stresstensor of each solid phase and the fluid pressure. The Lagrangian equations of motion are derivedfor the isotropic case and a theorem on the existence and uniqueness of their solution is given. Theplane wave analysis reveals the existence of three compressional and two shear waves. The theoryis applied to wave propagation in shaley sandstones showing that phase velocities of the faster P andS waves agree very well with experimental data for varying porosity and clay content. A simulationthrough a plane interface separating two frozen sandstones of different ice contents is presented.Fil: Santos, Juan Enrique. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ravazzoli, Claudia Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaJournal of Animal Ecology2004-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241971Santos, Juan Enrique; Ravazzoli, Claudia Leonor; Carcione, Jose M.; A model for wave propagation in a composite solid matrix saturated by a single-phase fluid; Journal of Animal Ecology; Journal of the Acoustical Society of America; 115; 6; 6-2004; 2749-27600001-49661520-8524CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1121/1.1710500info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/asa/jasa/article-abstract/115/6/2749/545949/A-model-for-wave-propagation-in-a-composite-solid?redirectedFrom=fulltextinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:10Zoai:ri.conicet.gov.ar:11336/241971instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:11.107CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A model for wave propagation in a composite solid matrix saturated by a single-phase fluid
title A model for wave propagation in a composite solid matrix saturated by a single-phase fluid
spellingShingle A model for wave propagation in a composite solid matrix saturated by a single-phase fluid
Santos, Juan Enrique
Wave propagation
Composite porous matrix
Weakly coupled solids
Variable porosity
title_short A model for wave propagation in a composite solid matrix saturated by a single-phase fluid
title_full A model for wave propagation in a composite solid matrix saturated by a single-phase fluid
title_fullStr A model for wave propagation in a composite solid matrix saturated by a single-phase fluid
title_full_unstemmed A model for wave propagation in a composite solid matrix saturated by a single-phase fluid
title_sort A model for wave propagation in a composite solid matrix saturated by a single-phase fluid
dc.creator.none.fl_str_mv Santos, Juan Enrique
Ravazzoli, Claudia Leonor
Carcione, Jose M.
author Santos, Juan Enrique
author_facet Santos, Juan Enrique
Ravazzoli, Claudia Leonor
Carcione, Jose M.
author_role author
author2 Ravazzoli, Claudia Leonor
Carcione, Jose M.
author2_role author
author
dc.subject.none.fl_str_mv Wave propagation
Composite porous matrix
Weakly coupled solids
Variable porosity
topic Wave propagation
Composite porous matrix
Weakly coupled solids
Variable porosity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper presents a theory to describe wave propagation in a porous medium composed of twosolids saturated by a single-phase fluid for spatially variable porosity. This problem has beenpreviously solved for constant porosity when one of the solids is ice or clay, but that model is notuseful for most realistic situations. The equations for variable porosity are derived from the virtualwork principle, where the generalized coordinates are identified as the displacements of the twosolid phases and a new variable associated with the relative fluid flow, whose divergence is thechange in fluid content. The generalized forces are the fluid pressure and combinations of the stresstensor of each solid phase and the fluid pressure. The Lagrangian equations of motion are derivedfor the isotropic case and a theorem on the existence and uniqueness of their solution is given. Theplane wave analysis reveals the existence of three compressional and two shear waves. The theoryis applied to wave propagation in shaley sandstones showing that phase velocities of the faster P andS waves agree very well with experimental data for varying porosity and clay content. A simulationthrough a plane interface separating two frozen sandstones of different ice contents is presented.
Fil: Santos, Juan Enrique. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ravazzoli, Claudia Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
description This paper presents a theory to describe wave propagation in a porous medium composed of twosolids saturated by a single-phase fluid for spatially variable porosity. This problem has beenpreviously solved for constant porosity when one of the solids is ice or clay, but that model is notuseful for most realistic situations. The equations for variable porosity are derived from the virtualwork principle, where the generalized coordinates are identified as the displacements of the twosolid phases and a new variable associated with the relative fluid flow, whose divergence is thechange in fluid content. The generalized forces are the fluid pressure and combinations of the stresstensor of each solid phase and the fluid pressure. The Lagrangian equations of motion are derivedfor the isotropic case and a theorem on the existence and uniqueness of their solution is given. Theplane wave analysis reveals the existence of three compressional and two shear waves. The theoryis applied to wave propagation in shaley sandstones showing that phase velocities of the faster P andS waves agree very well with experimental data for varying porosity and clay content. A simulationthrough a plane interface separating two frozen sandstones of different ice contents is presented.
publishDate 2004
dc.date.none.fl_str_mv 2004-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/241971
Santos, Juan Enrique; Ravazzoli, Claudia Leonor; Carcione, Jose M.; A model for wave propagation in a composite solid matrix saturated by a single-phase fluid; Journal of Animal Ecology; Journal of the Acoustical Society of America; 115; 6; 6-2004; 2749-2760
0001-4966
1520-8524
CONICET Digital
CONICET
url http://hdl.handle.net/11336/241971
identifier_str_mv Santos, Juan Enrique; Ravazzoli, Claudia Leonor; Carcione, Jose M.; A model for wave propagation in a composite solid matrix saturated by a single-phase fluid; Journal of Animal Ecology; Journal of the Acoustical Society of America; 115; 6; 6-2004; 2749-2760
0001-4966
1520-8524
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1121/1.1710500
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/asa/jasa/article-abstract/115/6/2749/545949/A-model-for-wave-propagation-in-a-composite-solid?redirectedFrom=fulltext
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Journal of Animal Ecology
publisher.none.fl_str_mv Journal of Animal Ecology
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613757444030464
score 13.070432