CT scanning as a tool for taphonomic analysis of shell beds: a case study on small irregular echinoid concretionary accumulations from the upper Hauterivian of the Neuquén Basin, w...

Autores
Lehmann, Oscar Emilio Rodrigo; Velan, Osvaldo; Lazo, Dario Gustavo
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Over the last two decades 3D-imaging techniques have been widely used in the reconstruction of fossils, from skulls and bones to the microstructure of delicate carbonized flowers. In general, shell beds lie outside the feasible size range in which these methods provide meaningful data. If a fossil concentration could be studied this way, important information could be easily assessed or quantified. For example, the close-packing of bioclasts and size-sorting could be assessed easily. Also, the percentage in volume of bioclasts relative to the sedimentary matrix and the amount of individuals per volume unit could be calculated in few steps. Here we present a case study using small irregular echinoid concretionary accumulations from the Agrio Formation, upper Hauterivian, Neuquén Basin, west-central Argentina.The studied carbonate concretions (N= 9) were collected from a single bed in the upper third of the Agua de la Mula Member. They contain a monotypic accumulation of small irregular echinoids belonging to the genus Caenholectypus POMEL immersed in a fine-grained matrix. The concretions are ellipsoidal and range in size from 6 to 15cm in length and 4.5-5.5 cm in thickness.Four concretions (Fig. 1A) were selected to be scanned with a Toshiba Aquilion ONE medical CT scanner, with 120kV, 500mA and a final slide thickness of 0.5mm at the Instituto Universitario Hospital Italiano of Buenos Aires. This resulted in an image stack of 1267 slides that was further digitally processed.First the density of individuals was estimated using between five and seven 1cm-sided randomly located cubes inside each concretion (Fig. 1B). The number of individuals with at least 50% of volume included in each cube was counted. This number was divided by the volume of the cube, obtaining its density. The mean of all the cubes? densities was used to estimate the density of the whole concentration, which resulted in 4.23 echinoids/cm3. A digital simulation of an ellipsoid with the dimensions of the concretions filled with smaller ellipsoids with the size of the echinoids produced very similar visual results as those observed in the CTs. This was used as a confirmation for the previous result.Then, the close-packing of bioclasts was observed across each concretion in two perpendicular directions (Fig. 1C). Following the usual classification, the studied accumulation is densely to loosely packed, with some exceptional patches where it could be described as loosely packed (matrix-supported). This was done considering the nearly hemispherical shape of the echinoids. Finally, the percentage of bioclasts relative to the sedimentary matrix was estimated in two ways. Firstly, the previously obtained density of individuals and their approximate volume were used in conjunction with the volume of the concretions. This approach resulted in an estimated percentage of 56.77%. This value matches closely the lower boundary of the ?dense/loose? close-packing category (55%) included in traditional visual guides. The second way was to use the volume of the73concretions and the volume of the echinoids after digitally removing the sediment. This method yielded widely varying results, from 30.15% to 47.95%.The disagreement between these results may be due to an ineffective removal of the sediment from the 3D-images. Some echinoids are filled with the same matrix that surrounds them, while others are devoid of it and cemented internally. This situation complicates the differentiation between the echinoids and the matrix based solely on density, as many digital tools do. However, the echinoids remain visually distinct throughout the concretions.The previous results are being used to aid the interpretation of the genetic origin of the echinoid accumulation, as well as a quantification of the basic descriptive taphonomic information. Remarkably, these results were accomplished without the destruction of the concretions and preserving the echinoids for further studies.
Fil: Lehmann, Oscar Emilio Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; Argentina
Fil: Velan, Osvaldo. Hospital Italiano; Argentina
Fil: Lazo, Dario Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; Argentina
8th International Meeting on Taphonomy and Fossilization
Austria
University of Vienna
Natural History Museum Vienna
Materia
Echinoid
Taphonomy
Concretion
C-T scan
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/229411

id CONICETDig_0ddeb3e31fb3a1c79090d78f140fd1c7
oai_identifier_str oai:ri.conicet.gov.ar:11336/229411
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling CT scanning as a tool for taphonomic analysis of shell beds: a case study on small irregular echinoid concretionary accumulations from the upper Hauterivian of the Neuquén Basin, west-central ArgentinaLehmann, Oscar Emilio RodrigoVelan, OsvaldoLazo, Dario GustavoEchinoidTaphonomyConcretionC-T scanhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Over the last two decades 3D-imaging techniques have been widely used in the reconstruction of fossils, from skulls and bones to the microstructure of delicate carbonized flowers. In general, shell beds lie outside the feasible size range in which these methods provide meaningful data. If a fossil concentration could be studied this way, important information could be easily assessed or quantified. For example, the close-packing of bioclasts and size-sorting could be assessed easily. Also, the percentage in volume of bioclasts relative to the sedimentary matrix and the amount of individuals per volume unit could be calculated in few steps. Here we present a case study using small irregular echinoid concretionary accumulations from the Agrio Formation, upper Hauterivian, Neuquén Basin, west-central Argentina.The studied carbonate concretions (N= 9) were collected from a single bed in the upper third of the Agua de la Mula Member. They contain a monotypic accumulation of small irregular echinoids belonging to the genus Caenholectypus POMEL immersed in a fine-grained matrix. The concretions are ellipsoidal and range in size from 6 to 15cm in length and 4.5-5.5 cm in thickness.Four concretions (Fig. 1A) were selected to be scanned with a Toshiba Aquilion ONE medical CT scanner, with 120kV, 500mA and a final slide thickness of 0.5mm at the Instituto Universitario Hospital Italiano of Buenos Aires. This resulted in an image stack of 1267 slides that was further digitally processed.First the density of individuals was estimated using between five and seven 1cm-sided randomly located cubes inside each concretion (Fig. 1B). The number of individuals with at least 50% of volume included in each cube was counted. This number was divided by the volume of the cube, obtaining its density. The mean of all the cubes? densities was used to estimate the density of the whole concentration, which resulted in 4.23 echinoids/cm3. A digital simulation of an ellipsoid with the dimensions of the concretions filled with smaller ellipsoids with the size of the echinoids produced very similar visual results as those observed in the CTs. This was used as a confirmation for the previous result.Then, the close-packing of bioclasts was observed across each concretion in two perpendicular directions (Fig. 1C). Following the usual classification, the studied accumulation is densely to loosely packed, with some exceptional patches where it could be described as loosely packed (matrix-supported). This was done considering the nearly hemispherical shape of the echinoids. Finally, the percentage of bioclasts relative to the sedimentary matrix was estimated in two ways. Firstly, the previously obtained density of individuals and their approximate volume were used in conjunction with the volume of the concretions. This approach resulted in an estimated percentage of 56.77%. This value matches closely the lower boundary of the ?dense/loose? close-packing category (55%) included in traditional visual guides. The second way was to use the volume of the73concretions and the volume of the echinoids after digitally removing the sediment. This method yielded widely varying results, from 30.15% to 47.95%.The disagreement between these results may be due to an ineffective removal of the sediment from the 3D-images. Some echinoids are filled with the same matrix that surrounds them, while others are devoid of it and cemented internally. This situation complicates the differentiation between the echinoids and the matrix based solely on density, as many digital tools do. However, the echinoids remain visually distinct throughout the concretions.The previous results are being used to aid the interpretation of the genetic origin of the echinoid accumulation, as well as a quantification of the basic descriptive taphonomic information. Remarkably, these results were accomplished without the destruction of the concretions and preserving the echinoids for further studies.Fil: Lehmann, Oscar Emilio Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; ArgentinaFil: Velan, Osvaldo. Hospital Italiano; ArgentinaFil: Lazo, Dario Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; Argentina8th International Meeting on Taphonomy and FossilizationAustriaUniversity of ViennaNatural History Museum ViennaUniversity of Wien2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/229411CT scanning as a tool for taphonomic analysis of shell beds: a case study on small irregular echinoid concretionary accumulations from the upper Hauterivian of the Neuquén Basin, west-central Argentina; 8th International Meeting on Taphonomy and Fossilization; Austria; 2017; 72-73CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://taphos2017.univie.ac.at/home/info:eu-repo/semantics/altIdentifier/url/https://taphos2017.univie.ac.at/fileadmin/user_upload/k_taphos2017/Programme_and_Abstracts_-Taphos_2017.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:45:07Zoai:ri.conicet.gov.ar:11336/229411instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:45:08.261CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv CT scanning as a tool for taphonomic analysis of shell beds: a case study on small irregular echinoid concretionary accumulations from the upper Hauterivian of the Neuquén Basin, west-central Argentina
title CT scanning as a tool for taphonomic analysis of shell beds: a case study on small irregular echinoid concretionary accumulations from the upper Hauterivian of the Neuquén Basin, west-central Argentina
spellingShingle CT scanning as a tool for taphonomic analysis of shell beds: a case study on small irregular echinoid concretionary accumulations from the upper Hauterivian of the Neuquén Basin, west-central Argentina
Lehmann, Oscar Emilio Rodrigo
Echinoid
Taphonomy
Concretion
C-T scan
title_short CT scanning as a tool for taphonomic analysis of shell beds: a case study on small irregular echinoid concretionary accumulations from the upper Hauterivian of the Neuquén Basin, west-central Argentina
title_full CT scanning as a tool for taphonomic analysis of shell beds: a case study on small irregular echinoid concretionary accumulations from the upper Hauterivian of the Neuquén Basin, west-central Argentina
title_fullStr CT scanning as a tool for taphonomic analysis of shell beds: a case study on small irregular echinoid concretionary accumulations from the upper Hauterivian of the Neuquén Basin, west-central Argentina
title_full_unstemmed CT scanning as a tool for taphonomic analysis of shell beds: a case study on small irregular echinoid concretionary accumulations from the upper Hauterivian of the Neuquén Basin, west-central Argentina
title_sort CT scanning as a tool for taphonomic analysis of shell beds: a case study on small irregular echinoid concretionary accumulations from the upper Hauterivian of the Neuquén Basin, west-central Argentina
dc.creator.none.fl_str_mv Lehmann, Oscar Emilio Rodrigo
Velan, Osvaldo
Lazo, Dario Gustavo
author Lehmann, Oscar Emilio Rodrigo
author_facet Lehmann, Oscar Emilio Rodrigo
Velan, Osvaldo
Lazo, Dario Gustavo
author_role author
author2 Velan, Osvaldo
Lazo, Dario Gustavo
author2_role author
author
dc.subject.none.fl_str_mv Echinoid
Taphonomy
Concretion
C-T scan
topic Echinoid
Taphonomy
Concretion
C-T scan
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Over the last two decades 3D-imaging techniques have been widely used in the reconstruction of fossils, from skulls and bones to the microstructure of delicate carbonized flowers. In general, shell beds lie outside the feasible size range in which these methods provide meaningful data. If a fossil concentration could be studied this way, important information could be easily assessed or quantified. For example, the close-packing of bioclasts and size-sorting could be assessed easily. Also, the percentage in volume of bioclasts relative to the sedimentary matrix and the amount of individuals per volume unit could be calculated in few steps. Here we present a case study using small irregular echinoid concretionary accumulations from the Agrio Formation, upper Hauterivian, Neuquén Basin, west-central Argentina.The studied carbonate concretions (N= 9) were collected from a single bed in the upper third of the Agua de la Mula Member. They contain a monotypic accumulation of small irregular echinoids belonging to the genus Caenholectypus POMEL immersed in a fine-grained matrix. The concretions are ellipsoidal and range in size from 6 to 15cm in length and 4.5-5.5 cm in thickness.Four concretions (Fig. 1A) were selected to be scanned with a Toshiba Aquilion ONE medical CT scanner, with 120kV, 500mA and a final slide thickness of 0.5mm at the Instituto Universitario Hospital Italiano of Buenos Aires. This resulted in an image stack of 1267 slides that was further digitally processed.First the density of individuals was estimated using between five and seven 1cm-sided randomly located cubes inside each concretion (Fig. 1B). The number of individuals with at least 50% of volume included in each cube was counted. This number was divided by the volume of the cube, obtaining its density. The mean of all the cubes? densities was used to estimate the density of the whole concentration, which resulted in 4.23 echinoids/cm3. A digital simulation of an ellipsoid with the dimensions of the concretions filled with smaller ellipsoids with the size of the echinoids produced very similar visual results as those observed in the CTs. This was used as a confirmation for the previous result.Then, the close-packing of bioclasts was observed across each concretion in two perpendicular directions (Fig. 1C). Following the usual classification, the studied accumulation is densely to loosely packed, with some exceptional patches where it could be described as loosely packed (matrix-supported). This was done considering the nearly hemispherical shape of the echinoids. Finally, the percentage of bioclasts relative to the sedimentary matrix was estimated in two ways. Firstly, the previously obtained density of individuals and their approximate volume were used in conjunction with the volume of the concretions. This approach resulted in an estimated percentage of 56.77%. This value matches closely the lower boundary of the ?dense/loose? close-packing category (55%) included in traditional visual guides. The second way was to use the volume of the73concretions and the volume of the echinoids after digitally removing the sediment. This method yielded widely varying results, from 30.15% to 47.95%.The disagreement between these results may be due to an ineffective removal of the sediment from the 3D-images. Some echinoids are filled with the same matrix that surrounds them, while others are devoid of it and cemented internally. This situation complicates the differentiation between the echinoids and the matrix based solely on density, as many digital tools do. However, the echinoids remain visually distinct throughout the concretions.The previous results are being used to aid the interpretation of the genetic origin of the echinoid accumulation, as well as a quantification of the basic descriptive taphonomic information. Remarkably, these results were accomplished without the destruction of the concretions and preserving the echinoids for further studies.
Fil: Lehmann, Oscar Emilio Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; Argentina
Fil: Velan, Osvaldo. Hospital Italiano; Argentina
Fil: Lazo, Dario Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; Argentina
8th International Meeting on Taphonomy and Fossilization
Austria
University of Vienna
Natural History Museum Vienna
description Over the last two decades 3D-imaging techniques have been widely used in the reconstruction of fossils, from skulls and bones to the microstructure of delicate carbonized flowers. In general, shell beds lie outside the feasible size range in which these methods provide meaningful data. If a fossil concentration could be studied this way, important information could be easily assessed or quantified. For example, the close-packing of bioclasts and size-sorting could be assessed easily. Also, the percentage in volume of bioclasts relative to the sedimentary matrix and the amount of individuals per volume unit could be calculated in few steps. Here we present a case study using small irregular echinoid concretionary accumulations from the Agrio Formation, upper Hauterivian, Neuquén Basin, west-central Argentina.The studied carbonate concretions (N= 9) were collected from a single bed in the upper third of the Agua de la Mula Member. They contain a monotypic accumulation of small irregular echinoids belonging to the genus Caenholectypus POMEL immersed in a fine-grained matrix. The concretions are ellipsoidal and range in size from 6 to 15cm in length and 4.5-5.5 cm in thickness.Four concretions (Fig. 1A) were selected to be scanned with a Toshiba Aquilion ONE medical CT scanner, with 120kV, 500mA and a final slide thickness of 0.5mm at the Instituto Universitario Hospital Italiano of Buenos Aires. This resulted in an image stack of 1267 slides that was further digitally processed.First the density of individuals was estimated using between five and seven 1cm-sided randomly located cubes inside each concretion (Fig. 1B). The number of individuals with at least 50% of volume included in each cube was counted. This number was divided by the volume of the cube, obtaining its density. The mean of all the cubes? densities was used to estimate the density of the whole concentration, which resulted in 4.23 echinoids/cm3. A digital simulation of an ellipsoid with the dimensions of the concretions filled with smaller ellipsoids with the size of the echinoids produced very similar visual results as those observed in the CTs. This was used as a confirmation for the previous result.Then, the close-packing of bioclasts was observed across each concretion in two perpendicular directions (Fig. 1C). Following the usual classification, the studied accumulation is densely to loosely packed, with some exceptional patches where it could be described as loosely packed (matrix-supported). This was done considering the nearly hemispherical shape of the echinoids. Finally, the percentage of bioclasts relative to the sedimentary matrix was estimated in two ways. Firstly, the previously obtained density of individuals and their approximate volume were used in conjunction with the volume of the concretions. This approach resulted in an estimated percentage of 56.77%. This value matches closely the lower boundary of the ?dense/loose? close-packing category (55%) included in traditional visual guides. The second way was to use the volume of the73concretions and the volume of the echinoids after digitally removing the sediment. This method yielded widely varying results, from 30.15% to 47.95%.The disagreement between these results may be due to an ineffective removal of the sediment from the 3D-images. Some echinoids are filled with the same matrix that surrounds them, while others are devoid of it and cemented internally. This situation complicates the differentiation between the echinoids and the matrix based solely on density, as many digital tools do. However, the echinoids remain visually distinct throughout the concretions.The previous results are being used to aid the interpretation of the genetic origin of the echinoid accumulation, as well as a quantification of the basic descriptive taphonomic information. Remarkably, these results were accomplished without the destruction of the concretions and preserving the echinoids for further studies.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Reunión
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/229411
CT scanning as a tool for taphonomic analysis of shell beds: a case study on small irregular echinoid concretionary accumulations from the upper Hauterivian of the Neuquén Basin, west-central Argentina; 8th International Meeting on Taphonomy and Fossilization; Austria; 2017; 72-73
CONICET Digital
CONICET
url http://hdl.handle.net/11336/229411
identifier_str_mv CT scanning as a tool for taphonomic analysis of shell beds: a case study on small irregular echinoid concretionary accumulations from the upper Hauterivian of the Neuquén Basin, west-central Argentina; 8th International Meeting on Taphonomy and Fossilization; Austria; 2017; 72-73
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://taphos2017.univie.ac.at/home/
info:eu-repo/semantics/altIdentifier/url/https://taphos2017.univie.ac.at/fileadmin/user_upload/k_taphos2017/Programme_and_Abstracts_-Taphos_2017.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv University of Wien
publisher.none.fl_str_mv University of Wien
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782147224928256
score 12.982451