Exact special twist method for quantum Monte Carlo simulations

Autores
Dagrada, Mario; Karakuzu, Seher; Vildosola, Veronica Laura; Casula, Michele; Sorella, Sandro
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995)PRBMDO0163-182910.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.
Fil: Dagrada, Mario. Universite Pierre et Marie Curie; Francia
Fil: Karakuzu, Seher. Scuola Internazionale Superiore di Studi Avanzati; Italia
Fil: Vildosola, Veronica Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes). Proyecto Tandar; Argentina
Fil: Casula, Michele. Universite Pierre et Marie Curie; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Sorella, Sandro. Scuola Internazionale Superiore di Studi Avanzati; Italia
Materia
Quantum Monte Carlo
Finite size effects
Strongly correlated systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/38657

id CONICETDig_0db53ab331feaa3c84377e6034cb57de
oai_identifier_str oai:ri.conicet.gov.ar:11336/38657
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Exact special twist method for quantum Monte Carlo simulationsDagrada, MarioKarakuzu, SeherVildosola, Veronica LauraCasula, MicheleSorella, SandroQuantum Monte CarloFinite size effectsStrongly correlated systemshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995)PRBMDO0163-182910.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.Fil: Dagrada, Mario. Universite Pierre et Marie Curie; FranciaFil: Karakuzu, Seher. Scuola Internazionale Superiore di Studi Avanzati; ItaliaFil: Vildosola, Veronica Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes). Proyecto Tandar; ArgentinaFil: Casula, Michele. Universite Pierre et Marie Curie; Francia. Centre National de la Recherche Scientifique; FranciaFil: Sorella, Sandro. Scuola Internazionale Superiore di Studi Avanzati; ItaliaAmerican Physical Society2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38657Dagrada, Mario; Karakuzu, Seher; Vildosola, Veronica Laura; Casula, Michele; Sorella, Sandro; Exact special twist method for quantum Monte Carlo simulations; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 94; 24; 12-2016; 1-161098-01212469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.94.245108info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.245108info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1606.06205info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:43:08Zoai:ri.conicet.gov.ar:11336/38657instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:43:08.604CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Exact special twist method for quantum Monte Carlo simulations
title Exact special twist method for quantum Monte Carlo simulations
spellingShingle Exact special twist method for quantum Monte Carlo simulations
Dagrada, Mario
Quantum Monte Carlo
Finite size effects
Strongly correlated systems
title_short Exact special twist method for quantum Monte Carlo simulations
title_full Exact special twist method for quantum Monte Carlo simulations
title_fullStr Exact special twist method for quantum Monte Carlo simulations
title_full_unstemmed Exact special twist method for quantum Monte Carlo simulations
title_sort Exact special twist method for quantum Monte Carlo simulations
dc.creator.none.fl_str_mv Dagrada, Mario
Karakuzu, Seher
Vildosola, Veronica Laura
Casula, Michele
Sorella, Sandro
author Dagrada, Mario
author_facet Dagrada, Mario
Karakuzu, Seher
Vildosola, Veronica Laura
Casula, Michele
Sorella, Sandro
author_role author
author2 Karakuzu, Seher
Vildosola, Veronica Laura
Casula, Michele
Sorella, Sandro
author2_role author
author
author
author
dc.subject.none.fl_str_mv Quantum Monte Carlo
Finite size effects
Strongly correlated systems
topic Quantum Monte Carlo
Finite size effects
Strongly correlated systems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995)PRBMDO0163-182910.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.
Fil: Dagrada, Mario. Universite Pierre et Marie Curie; Francia
Fil: Karakuzu, Seher. Scuola Internazionale Superiore di Studi Avanzati; Italia
Fil: Vildosola, Veronica Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes). Proyecto Tandar; Argentina
Fil: Casula, Michele. Universite Pierre et Marie Curie; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Sorella, Sandro. Scuola Internazionale Superiore di Studi Avanzati; Italia
description We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995)PRBMDO0163-182910.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.
publishDate 2016
dc.date.none.fl_str_mv 2016-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/38657
Dagrada, Mario; Karakuzu, Seher; Vildosola, Veronica Laura; Casula, Michele; Sorella, Sandro; Exact special twist method for quantum Monte Carlo simulations; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 94; 24; 12-2016; 1-16
1098-0121
2469-9969
CONICET Digital
CONICET
url http://hdl.handle.net/11336/38657
identifier_str_mv Dagrada, Mario; Karakuzu, Seher; Vildosola, Veronica Laura; Casula, Michele; Sorella, Sandro; Exact special twist method for quantum Monte Carlo simulations; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 94; 24; 12-2016; 1-16
1098-0121
2469-9969
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.94.245108
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.245108
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1606.06205
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082935559553024
score 13.22299