Exact special twist method for quantum Monte Carlo simulations
- Autores
- Dagrada, Mario; Karakuzu, Seher; Vildosola, Veronica Laura; Casula, Michele; Sorella, Sandro
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995)PRBMDO0163-182910.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.
Fil: Dagrada, Mario. Universite Pierre et Marie Curie; Francia
Fil: Karakuzu, Seher. Scuola Internazionale Superiore di Studi Avanzati; Italia
Fil: Vildosola, Veronica Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes). Proyecto Tandar; Argentina
Fil: Casula, Michele. Universite Pierre et Marie Curie; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Sorella, Sandro. Scuola Internazionale Superiore di Studi Avanzati; Italia - Materia
-
Quantum Monte Carlo
Finite size effects
Strongly correlated systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/38657
Ver los metadatos del registro completo
id |
CONICETDig_0db53ab331feaa3c84377e6034cb57de |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/38657 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Exact special twist method for quantum Monte Carlo simulationsDagrada, MarioKarakuzu, SeherVildosola, Veronica LauraCasula, MicheleSorella, SandroQuantum Monte CarloFinite size effectsStrongly correlated systemshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995)PRBMDO0163-182910.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.Fil: Dagrada, Mario. Universite Pierre et Marie Curie; FranciaFil: Karakuzu, Seher. Scuola Internazionale Superiore di Studi Avanzati; ItaliaFil: Vildosola, Veronica Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes). Proyecto Tandar; ArgentinaFil: Casula, Michele. Universite Pierre et Marie Curie; Francia. Centre National de la Recherche Scientifique; FranciaFil: Sorella, Sandro. Scuola Internazionale Superiore di Studi Avanzati; ItaliaAmerican Physical Society2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38657Dagrada, Mario; Karakuzu, Seher; Vildosola, Veronica Laura; Casula, Michele; Sorella, Sandro; Exact special twist method for quantum Monte Carlo simulations; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 94; 24; 12-2016; 1-161098-01212469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.94.245108info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.245108info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1606.06205info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:43:08Zoai:ri.conicet.gov.ar:11336/38657instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:43:08.604CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Exact special twist method for quantum Monte Carlo simulations |
title |
Exact special twist method for quantum Monte Carlo simulations |
spellingShingle |
Exact special twist method for quantum Monte Carlo simulations Dagrada, Mario Quantum Monte Carlo Finite size effects Strongly correlated systems |
title_short |
Exact special twist method for quantum Monte Carlo simulations |
title_full |
Exact special twist method for quantum Monte Carlo simulations |
title_fullStr |
Exact special twist method for quantum Monte Carlo simulations |
title_full_unstemmed |
Exact special twist method for quantum Monte Carlo simulations |
title_sort |
Exact special twist method for quantum Monte Carlo simulations |
dc.creator.none.fl_str_mv |
Dagrada, Mario Karakuzu, Seher Vildosola, Veronica Laura Casula, Michele Sorella, Sandro |
author |
Dagrada, Mario |
author_facet |
Dagrada, Mario Karakuzu, Seher Vildosola, Veronica Laura Casula, Michele Sorella, Sandro |
author_role |
author |
author2 |
Karakuzu, Seher Vildosola, Veronica Laura Casula, Michele Sorella, Sandro |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Quantum Monte Carlo Finite size effects Strongly correlated systems |
topic |
Quantum Monte Carlo Finite size effects Strongly correlated systems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995)PRBMDO0163-182910.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells. Fil: Dagrada, Mario. Universite Pierre et Marie Curie; Francia Fil: Karakuzu, Seher. Scuola Internazionale Superiore di Studi Avanzati; Italia Fil: Vildosola, Veronica Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes). Proyecto Tandar; Argentina Fil: Casula, Michele. Universite Pierre et Marie Curie; Francia. Centre National de la Recherche Scientifique; Francia Fil: Sorella, Sandro. Scuola Internazionale Superiore di Studi Avanzati; Italia |
description |
We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995)PRBMDO0163-182910.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/38657 Dagrada, Mario; Karakuzu, Seher; Vildosola, Veronica Laura; Casula, Michele; Sorella, Sandro; Exact special twist method for quantum Monte Carlo simulations; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 94; 24; 12-2016; 1-16 1098-0121 2469-9969 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/38657 |
identifier_str_mv |
Dagrada, Mario; Karakuzu, Seher; Vildosola, Veronica Laura; Casula, Michele; Sorella, Sandro; Exact special twist method for quantum Monte Carlo simulations; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 94; 24; 12-2016; 1-16 1098-0121 2469-9969 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.94.245108 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.245108 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1606.06205 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082935559553024 |
score |
13.22299 |