Perturbations and chaos in quantum maps

Autores
Bullo, Darío Ezequiel; Wisniacki, Diego Ariel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The local density of states (LDOS) is a distribution that characterizes the effects of perturbations on quantum systems. Recently, a semiclassical theory was proposed for the LDOS of chaotic billiards and maps. This theory predicts that the LDOS is a Breit-Wigner distribution independent of the perturbation strength and also gives a semiclassical expression for the LDOS width. Here, we test the validity of such an approximation in quantum maps by varying the degree of chaoticity, the region in phase space where the perturbation is applied, and the intensity of the perturbation. We show that for highly chaotic maps or strong perturbations the semiclassical theory of the LDOS is accurate to describe the quantum distribution. Moreover, the width of the LDOS is also well represented for its semiclassical expression in the case of mixed classical dynamics. © 2012 American Physical Society.
Fil: Bullo, Darío Ezequiel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Wisniacki, Diego Ariel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Chaos
Perturbations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/56097

id CONICETDig_0cf39d361a27429ab63d21a3121e0172
oai_identifier_str oai:ri.conicet.gov.ar:11336/56097
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Perturbations and chaos in quantum mapsBullo, Darío EzequielWisniacki, Diego ArielChaosPerturbationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The local density of states (LDOS) is a distribution that characterizes the effects of perturbations on quantum systems. Recently, a semiclassical theory was proposed for the LDOS of chaotic billiards and maps. This theory predicts that the LDOS is a Breit-Wigner distribution independent of the perturbation strength and also gives a semiclassical expression for the LDOS width. Here, we test the validity of such an approximation in quantum maps by varying the degree of chaoticity, the region in phase space where the perturbation is applied, and the intensity of the perturbation. We show that for highly chaotic maps or strong perturbations the semiclassical theory of the LDOS is accurate to describe the quantum distribution. Moreover, the width of the LDOS is also well represented for its semiclassical expression in the case of mixed classical dynamics. © 2012 American Physical Society.Fil: Bullo, Darío Ezequiel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Wisniacki, Diego Ariel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2012-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56097Bullo, Darío Ezequiel; Wisniacki, Diego Ariel; Perturbations and chaos in quantum maps; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 86; 2; 8-2012; 1-81539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevE.86.026206info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.86.026206info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:16Zoai:ri.conicet.gov.ar:11336/56097instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:16.796CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Perturbations and chaos in quantum maps
title Perturbations and chaos in quantum maps
spellingShingle Perturbations and chaos in quantum maps
Bullo, Darío Ezequiel
Chaos
Perturbations
title_short Perturbations and chaos in quantum maps
title_full Perturbations and chaos in quantum maps
title_fullStr Perturbations and chaos in quantum maps
title_full_unstemmed Perturbations and chaos in quantum maps
title_sort Perturbations and chaos in quantum maps
dc.creator.none.fl_str_mv Bullo, Darío Ezequiel
Wisniacki, Diego Ariel
author Bullo, Darío Ezequiel
author_facet Bullo, Darío Ezequiel
Wisniacki, Diego Ariel
author_role author
author2 Wisniacki, Diego Ariel
author2_role author
dc.subject.none.fl_str_mv Chaos
Perturbations
topic Chaos
Perturbations
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The local density of states (LDOS) is a distribution that characterizes the effects of perturbations on quantum systems. Recently, a semiclassical theory was proposed for the LDOS of chaotic billiards and maps. This theory predicts that the LDOS is a Breit-Wigner distribution independent of the perturbation strength and also gives a semiclassical expression for the LDOS width. Here, we test the validity of such an approximation in quantum maps by varying the degree of chaoticity, the region in phase space where the perturbation is applied, and the intensity of the perturbation. We show that for highly chaotic maps or strong perturbations the semiclassical theory of the LDOS is accurate to describe the quantum distribution. Moreover, the width of the LDOS is also well represented for its semiclassical expression in the case of mixed classical dynamics. © 2012 American Physical Society.
Fil: Bullo, Darío Ezequiel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Wisniacki, Diego Ariel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description The local density of states (LDOS) is a distribution that characterizes the effects of perturbations on quantum systems. Recently, a semiclassical theory was proposed for the LDOS of chaotic billiards and maps. This theory predicts that the LDOS is a Breit-Wigner distribution independent of the perturbation strength and also gives a semiclassical expression for the LDOS width. Here, we test the validity of such an approximation in quantum maps by varying the degree of chaoticity, the region in phase space where the perturbation is applied, and the intensity of the perturbation. We show that for highly chaotic maps or strong perturbations the semiclassical theory of the LDOS is accurate to describe the quantum distribution. Moreover, the width of the LDOS is also well represented for its semiclassical expression in the case of mixed classical dynamics. © 2012 American Physical Society.
publishDate 2012
dc.date.none.fl_str_mv 2012-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/56097
Bullo, Darío Ezequiel; Wisniacki, Diego Ariel; Perturbations and chaos in quantum maps; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 86; 2; 8-2012; 1-8
1539-3755
CONICET Digital
CONICET
url http://hdl.handle.net/11336/56097
identifier_str_mv Bullo, Darío Ezequiel; Wisniacki, Diego Ariel; Perturbations and chaos in quantum maps; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 86; 2; 8-2012; 1-8
1539-3755
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevE.86.026206
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.86.026206
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613242655080448
score 13.070432