Perturbations and chaos in quantum maps
- Autores
- Bullo, Darío Ezequiel; Wisniacki, Diego Ariel
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The local density of states (LDOS) is a distribution that characterizes the effects of perturbations on quantum systems. Recently, a semiclassical theory was proposed for the LDOS of chaotic billiards and maps. This theory predicts that the LDOS is a Breit-Wigner distribution independent of the perturbation strength and also gives a semiclassical expression for the LDOS width. Here, we test the validity of such an approximation in quantum maps by varying the degree of chaoticity, the region in phase space where the perturbation is applied, and the intensity of the perturbation. We show that for highly chaotic maps or strong perturbations the semiclassical theory of the LDOS is accurate to describe the quantum distribution. Moreover, the width of the LDOS is also well represented for its semiclassical expression in the case of mixed classical dynamics. © 2012 American Physical Society.
Fil: Bullo, Darío Ezequiel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Wisniacki, Diego Ariel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
Chaos
Perturbations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/56097
Ver los metadatos del registro completo
id |
CONICETDig_0cf39d361a27429ab63d21a3121e0172 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/56097 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Perturbations and chaos in quantum mapsBullo, Darío EzequielWisniacki, Diego ArielChaosPerturbationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The local density of states (LDOS) is a distribution that characterizes the effects of perturbations on quantum systems. Recently, a semiclassical theory was proposed for the LDOS of chaotic billiards and maps. This theory predicts that the LDOS is a Breit-Wigner distribution independent of the perturbation strength and also gives a semiclassical expression for the LDOS width. Here, we test the validity of such an approximation in quantum maps by varying the degree of chaoticity, the region in phase space where the perturbation is applied, and the intensity of the perturbation. We show that for highly chaotic maps or strong perturbations the semiclassical theory of the LDOS is accurate to describe the quantum distribution. Moreover, the width of the LDOS is also well represented for its semiclassical expression in the case of mixed classical dynamics. © 2012 American Physical Society.Fil: Bullo, Darío Ezequiel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Wisniacki, Diego Ariel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2012-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56097Bullo, Darío Ezequiel; Wisniacki, Diego Ariel; Perturbations and chaos in quantum maps; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 86; 2; 8-2012; 1-81539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevE.86.026206info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.86.026206info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:16Zoai:ri.conicet.gov.ar:11336/56097instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:16.796CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Perturbations and chaos in quantum maps |
title |
Perturbations and chaos in quantum maps |
spellingShingle |
Perturbations and chaos in quantum maps Bullo, Darío Ezequiel Chaos Perturbations |
title_short |
Perturbations and chaos in quantum maps |
title_full |
Perturbations and chaos in quantum maps |
title_fullStr |
Perturbations and chaos in quantum maps |
title_full_unstemmed |
Perturbations and chaos in quantum maps |
title_sort |
Perturbations and chaos in quantum maps |
dc.creator.none.fl_str_mv |
Bullo, Darío Ezequiel Wisniacki, Diego Ariel |
author |
Bullo, Darío Ezequiel |
author_facet |
Bullo, Darío Ezequiel Wisniacki, Diego Ariel |
author_role |
author |
author2 |
Wisniacki, Diego Ariel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Chaos Perturbations |
topic |
Chaos Perturbations |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The local density of states (LDOS) is a distribution that characterizes the effects of perturbations on quantum systems. Recently, a semiclassical theory was proposed for the LDOS of chaotic billiards and maps. This theory predicts that the LDOS is a Breit-Wigner distribution independent of the perturbation strength and also gives a semiclassical expression for the LDOS width. Here, we test the validity of such an approximation in quantum maps by varying the degree of chaoticity, the region in phase space where the perturbation is applied, and the intensity of the perturbation. We show that for highly chaotic maps or strong perturbations the semiclassical theory of the LDOS is accurate to describe the quantum distribution. Moreover, the width of the LDOS is also well represented for its semiclassical expression in the case of mixed classical dynamics. © 2012 American Physical Society. Fil: Bullo, Darío Ezequiel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Wisniacki, Diego Ariel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
The local density of states (LDOS) is a distribution that characterizes the effects of perturbations on quantum systems. Recently, a semiclassical theory was proposed for the LDOS of chaotic billiards and maps. This theory predicts that the LDOS is a Breit-Wigner distribution independent of the perturbation strength and also gives a semiclassical expression for the LDOS width. Here, we test the validity of such an approximation in quantum maps by varying the degree of chaoticity, the region in phase space where the perturbation is applied, and the intensity of the perturbation. We show that for highly chaotic maps or strong perturbations the semiclassical theory of the LDOS is accurate to describe the quantum distribution. Moreover, the width of the LDOS is also well represented for its semiclassical expression in the case of mixed classical dynamics. © 2012 American Physical Society. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/56097 Bullo, Darío Ezequiel; Wisniacki, Diego Ariel; Perturbations and chaos in quantum maps; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 86; 2; 8-2012; 1-8 1539-3755 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/56097 |
identifier_str_mv |
Bullo, Darío Ezequiel; Wisniacki, Diego Ariel; Perturbations and chaos in quantum maps; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 86; 2; 8-2012; 1-8 1539-3755 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevE.86.026206 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.86.026206 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613242655080448 |
score |
13.070432 |