Urban tree surveying using aerial UAV images and machine learning algorithms
- Autores
- D'amato, Juan Pablo; Rinaldi, Pablo Rafael; Boroni, Gustavo Adolfo
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, a novel approach to surveying urban trees based on automatic detecting from images captured using unmanned aerial vehicles (UAVs) is presented. Such a method is a cost-effective alternative to traditional measurement techniques. Through autonomous flights, UAVs capture detailed aerial imagery of urban areas, which is then processed to generate high-resolution raster images and elevation models. Machine learning algorithms are then applied to these images to identify trees, refining the detection process by eliminating false positives and estimating tree heights. Dealing with challenges such as flight time limitations and the irregularity of urban trees, the method achieves great accuracy in tree identification, not only covering the tree detection but also the separation between sidewalk and block interior trees, the estimation of height among other important data. Although the methodology does not cover all aspects of tree surveying, such as trunk health or diameter, it serves as a complementary tool to ground survey systems.
Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Rinaldi, Pablo Rafael. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Boroni, Gustavo Adolfo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina - Materia
-
machine learning,
UAV
urban studies - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/274584
Ver los metadatos del registro completo
| id |
CONICETDig_0cd107a7dce92e1e1dc4b41439646177 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/274584 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Urban tree surveying using aerial UAV images and machine learning algorithmsD'amato, Juan PabloRinaldi, Pablo RafaelBoroni, Gustavo Adolfomachine learning,UAVurban studieshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this work, a novel approach to surveying urban trees based on automatic detecting from images captured using unmanned aerial vehicles (UAVs) is presented. Such a method is a cost-effective alternative to traditional measurement techniques. Through autonomous flights, UAVs capture detailed aerial imagery of urban areas, which is then processed to generate high-resolution raster images and elevation models. Machine learning algorithms are then applied to these images to identify trees, refining the detection process by eliminating false positives and estimating tree heights. Dealing with challenges such as flight time limitations and the irregularity of urban trees, the method achieves great accuracy in tree identification, not only covering the tree detection but also the separation between sidewalk and block interior trees, the estimation of height among other important data. Although the methodology does not cover all aspects of tree surveying, such as trunk health or diameter, it serves as a complementary tool to ground survey systems.Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: Rinaldi, Pablo Rafael. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: Boroni, Gustavo Adolfo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaInformation and Technology Management Association2025-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274584D'amato, Juan Pablo; Rinaldi, Pablo Rafael; Boroni, Gustavo Adolfo; Urban tree surveying using aerial UAV images and machine learning algorithms; Information and Technology Management Association; World Journal of Information Systems; 1; 3; 3-2025; 71-823051-6420CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.17013/wjis.v1i3.20info:eu-repo/semantics/altIdentifier/url/https://wjis.org/index.php/wjis/article/view/20info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:40:25Zoai:ri.conicet.gov.ar:11336/274584instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:40:25.795CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Urban tree surveying using aerial UAV images and machine learning algorithms |
| title |
Urban tree surveying using aerial UAV images and machine learning algorithms |
| spellingShingle |
Urban tree surveying using aerial UAV images and machine learning algorithms D'amato, Juan Pablo machine learning, UAV urban studies |
| title_short |
Urban tree surveying using aerial UAV images and machine learning algorithms |
| title_full |
Urban tree surveying using aerial UAV images and machine learning algorithms |
| title_fullStr |
Urban tree surveying using aerial UAV images and machine learning algorithms |
| title_full_unstemmed |
Urban tree surveying using aerial UAV images and machine learning algorithms |
| title_sort |
Urban tree surveying using aerial UAV images and machine learning algorithms |
| dc.creator.none.fl_str_mv |
D'amato, Juan Pablo Rinaldi, Pablo Rafael Boroni, Gustavo Adolfo |
| author |
D'amato, Juan Pablo |
| author_facet |
D'amato, Juan Pablo Rinaldi, Pablo Rafael Boroni, Gustavo Adolfo |
| author_role |
author |
| author2 |
Rinaldi, Pablo Rafael Boroni, Gustavo Adolfo |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
machine learning, UAV urban studies |
| topic |
machine learning, UAV urban studies |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this work, a novel approach to surveying urban trees based on automatic detecting from images captured using unmanned aerial vehicles (UAVs) is presented. Such a method is a cost-effective alternative to traditional measurement techniques. Through autonomous flights, UAVs capture detailed aerial imagery of urban areas, which is then processed to generate high-resolution raster images and elevation models. Machine learning algorithms are then applied to these images to identify trees, refining the detection process by eliminating false positives and estimating tree heights. Dealing with challenges such as flight time limitations and the irregularity of urban trees, the method achieves great accuracy in tree identification, not only covering the tree detection but also the separation between sidewalk and block interior trees, the estimation of height among other important data. Although the methodology does not cover all aspects of tree surveying, such as trunk health or diameter, it serves as a complementary tool to ground survey systems. Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina Fil: Rinaldi, Pablo Rafael. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina Fil: Boroni, Gustavo Adolfo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina |
| description |
In this work, a novel approach to surveying urban trees based on automatic detecting from images captured using unmanned aerial vehicles (UAVs) is presented. Such a method is a cost-effective alternative to traditional measurement techniques. Through autonomous flights, UAVs capture detailed aerial imagery of urban areas, which is then processed to generate high-resolution raster images and elevation models. Machine learning algorithms are then applied to these images to identify trees, refining the detection process by eliminating false positives and estimating tree heights. Dealing with challenges such as flight time limitations and the irregularity of urban trees, the method achieves great accuracy in tree identification, not only covering the tree detection but also the separation between sidewalk and block interior trees, the estimation of height among other important data. Although the methodology does not cover all aspects of tree surveying, such as trunk health or diameter, it serves as a complementary tool to ground survey systems. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/274584 D'amato, Juan Pablo; Rinaldi, Pablo Rafael; Boroni, Gustavo Adolfo; Urban tree surveying using aerial UAV images and machine learning algorithms; Information and Technology Management Association; World Journal of Information Systems; 1; 3; 3-2025; 71-82 3051-6420 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/274584 |
| identifier_str_mv |
D'amato, Juan Pablo; Rinaldi, Pablo Rafael; Boroni, Gustavo Adolfo; Urban tree surveying using aerial UAV images and machine learning algorithms; Information and Technology Management Association; World Journal of Information Systems; 1; 3; 3-2025; 71-82 3051-6420 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.17013/wjis.v1i3.20 info:eu-repo/semantics/altIdentifier/url/https://wjis.org/index.php/wjis/article/view/20 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Information and Technology Management Association |
| publisher.none.fl_str_mv |
Information and Technology Management Association |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847978103768350720 |
| score |
13.087074 |