Closed-time-path approach to the Casimir energy in real media

Autores
Rubio Lopez, Adrian Ezequiel; Lombardo, Fernando Cesar
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The closed-time-path (CTP) formalism is applied, in the framework of open quantum systems, to study the time evolution of the expectation value of the energy-momentum tensor of a scalar field in the presence of real materials. We analyze quantum (Casimir) fluctuations in a fully nonequilibrium scenario, when the scalar field is interacting with the polarization degrees of freedom of matter, described as quantum Brownian particles (harmonic oscillators coupled to a bath) at each point of space. A generalized analysis is done for two types of couplings between the field and the polarization degrees of freedom. On the one hand, we consider a bilinear coupling between the field and the polarization degrees of freedom, and on the other hand, a (more realistic) current-type coupling as in the case of the electromagnetic field interacting with matter. We successfully compute the CTP generating functional for the field through calculating the corresponding influence functionals. We consider the high-temperature limit for the field, keeping arbitrary temperatures for each part of the material’s volume elements. We obtain a closed form for the Hadamard propagator, which allows us to study the dynamical evolution of the expectations values of the energy-momentum tensor components from the initial time when the interactions are turned on. We show that two contributions always take place in the transient evolution: one is associated with the material, and the other is only associated with the field. Transient features are studied and the long-time limit is derived in several cases. We prove that in the steady situation of a field in n þ 1 dimensions, the material always contributes unless it is nondissipative. Conversely, the proper field contribution vanishes unless the material is nondissipative or—at least for the 1 þ 1 case—if there are regions without material. We finally conclude that any steady quantization scheme in 1 þ 1 dimensions must consider both contributions and, on the other hand, we argue why these results are physically expected from a dynamical point of view, and also could be valid for higher dimensions based on the expected continuity between the nondissipative and real-material cases.
Fil: Rubio Lopez, Adrian Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Lombardo, Fernando Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
NONEQUILIBRIUM QUANTUM FIELD THEORY
CASIMIR EFFECT
OPEN QUANTUM SYSTEM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17885

id CONICETDig_0c2efb0cbdbfbf66d0f0a056b656ebd6
oai_identifier_str oai:ri.conicet.gov.ar:11336/17885
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Closed-time-path approach to the Casimir energy in real mediaRubio Lopez, Adrian EzequielLombardo, Fernando CesarNONEQUILIBRIUM QUANTUM FIELD THEORYCASIMIR EFFECTOPEN QUANTUM SYSTEMhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The closed-time-path (CTP) formalism is applied, in the framework of open quantum systems, to study the time evolution of the expectation value of the energy-momentum tensor of a scalar field in the presence of real materials. We analyze quantum (Casimir) fluctuations in a fully nonequilibrium scenario, when the scalar field is interacting with the polarization degrees of freedom of matter, described as quantum Brownian particles (harmonic oscillators coupled to a bath) at each point of space. A generalized analysis is done for two types of couplings between the field and the polarization degrees of freedom. On the one hand, we consider a bilinear coupling between the field and the polarization degrees of freedom, and on the other hand, a (more realistic) current-type coupling as in the case of the electromagnetic field interacting with matter. We successfully compute the CTP generating functional for the field through calculating the corresponding influence functionals. We consider the high-temperature limit for the field, keeping arbitrary temperatures for each part of the material’s volume elements. We obtain a closed form for the Hadamard propagator, which allows us to study the dynamical evolution of the expectations values of the energy-momentum tensor components from the initial time when the interactions are turned on. We show that two contributions always take place in the transient evolution: one is associated with the material, and the other is only associated with the field. Transient features are studied and the long-time limit is derived in several cases. We prove that in the steady situation of a field in n þ 1 dimensions, the material always contributes unless it is nondissipative. Conversely, the proper field contribution vanishes unless the material is nondissipative or—at least for the 1 þ 1 case—if there are regions without material. We finally conclude that any steady quantization scheme in 1 þ 1 dimensions must consider both contributions and, on the other hand, we argue why these results are physically expected from a dynamical point of view, and also could be valid for higher dimensions based on the expected continuity between the nondissipative and real-material cases.Fil: Rubio Lopez, Adrian Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Lombardo, Fernando Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17885Rubio Lopez, Adrian Ezequiel; Lombardo, Fernando Cesar; Closed-time-path approach to the Casimir energy in real media; American Physical Society; Physical Review D; 89; 10; 5-2014; 1-26; 1050260556-2821enginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.89.105026info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.105026info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1404.7162info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:45Zoai:ri.conicet.gov.ar:11336/17885instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:45.954CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Closed-time-path approach to the Casimir energy in real media
title Closed-time-path approach to the Casimir energy in real media
spellingShingle Closed-time-path approach to the Casimir energy in real media
Rubio Lopez, Adrian Ezequiel
NONEQUILIBRIUM QUANTUM FIELD THEORY
CASIMIR EFFECT
OPEN QUANTUM SYSTEM
title_short Closed-time-path approach to the Casimir energy in real media
title_full Closed-time-path approach to the Casimir energy in real media
title_fullStr Closed-time-path approach to the Casimir energy in real media
title_full_unstemmed Closed-time-path approach to the Casimir energy in real media
title_sort Closed-time-path approach to the Casimir energy in real media
dc.creator.none.fl_str_mv Rubio Lopez, Adrian Ezequiel
Lombardo, Fernando Cesar
author Rubio Lopez, Adrian Ezequiel
author_facet Rubio Lopez, Adrian Ezequiel
Lombardo, Fernando Cesar
author_role author
author2 Lombardo, Fernando Cesar
author2_role author
dc.subject.none.fl_str_mv NONEQUILIBRIUM QUANTUM FIELD THEORY
CASIMIR EFFECT
OPEN QUANTUM SYSTEM
topic NONEQUILIBRIUM QUANTUM FIELD THEORY
CASIMIR EFFECT
OPEN QUANTUM SYSTEM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The closed-time-path (CTP) formalism is applied, in the framework of open quantum systems, to study the time evolution of the expectation value of the energy-momentum tensor of a scalar field in the presence of real materials. We analyze quantum (Casimir) fluctuations in a fully nonequilibrium scenario, when the scalar field is interacting with the polarization degrees of freedom of matter, described as quantum Brownian particles (harmonic oscillators coupled to a bath) at each point of space. A generalized analysis is done for two types of couplings between the field and the polarization degrees of freedom. On the one hand, we consider a bilinear coupling between the field and the polarization degrees of freedom, and on the other hand, a (more realistic) current-type coupling as in the case of the electromagnetic field interacting with matter. We successfully compute the CTP generating functional for the field through calculating the corresponding influence functionals. We consider the high-temperature limit for the field, keeping arbitrary temperatures for each part of the material’s volume elements. We obtain a closed form for the Hadamard propagator, which allows us to study the dynamical evolution of the expectations values of the energy-momentum tensor components from the initial time when the interactions are turned on. We show that two contributions always take place in the transient evolution: one is associated with the material, and the other is only associated with the field. Transient features are studied and the long-time limit is derived in several cases. We prove that in the steady situation of a field in n þ 1 dimensions, the material always contributes unless it is nondissipative. Conversely, the proper field contribution vanishes unless the material is nondissipative or—at least for the 1 þ 1 case—if there are regions without material. We finally conclude that any steady quantization scheme in 1 þ 1 dimensions must consider both contributions and, on the other hand, we argue why these results are physically expected from a dynamical point of view, and also could be valid for higher dimensions based on the expected continuity between the nondissipative and real-material cases.
Fil: Rubio Lopez, Adrian Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Lombardo, Fernando Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description The closed-time-path (CTP) formalism is applied, in the framework of open quantum systems, to study the time evolution of the expectation value of the energy-momentum tensor of a scalar field in the presence of real materials. We analyze quantum (Casimir) fluctuations in a fully nonequilibrium scenario, when the scalar field is interacting with the polarization degrees of freedom of matter, described as quantum Brownian particles (harmonic oscillators coupled to a bath) at each point of space. A generalized analysis is done for two types of couplings between the field and the polarization degrees of freedom. On the one hand, we consider a bilinear coupling between the field and the polarization degrees of freedom, and on the other hand, a (more realistic) current-type coupling as in the case of the electromagnetic field interacting with matter. We successfully compute the CTP generating functional for the field through calculating the corresponding influence functionals. We consider the high-temperature limit for the field, keeping arbitrary temperatures for each part of the material’s volume elements. We obtain a closed form for the Hadamard propagator, which allows us to study the dynamical evolution of the expectations values of the energy-momentum tensor components from the initial time when the interactions are turned on. We show that two contributions always take place in the transient evolution: one is associated with the material, and the other is only associated with the field. Transient features are studied and the long-time limit is derived in several cases. We prove that in the steady situation of a field in n þ 1 dimensions, the material always contributes unless it is nondissipative. Conversely, the proper field contribution vanishes unless the material is nondissipative or—at least for the 1 þ 1 case—if there are regions without material. We finally conclude that any steady quantization scheme in 1 þ 1 dimensions must consider both contributions and, on the other hand, we argue why these results are physically expected from a dynamical point of view, and also could be valid for higher dimensions based on the expected continuity between the nondissipative and real-material cases.
publishDate 2014
dc.date.none.fl_str_mv 2014-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17885
Rubio Lopez, Adrian Ezequiel; Lombardo, Fernando Cesar; Closed-time-path approach to the Casimir energy in real media; American Physical Society; Physical Review D; 89; 10; 5-2014; 1-26; 105026
0556-2821
url http://hdl.handle.net/11336/17885
identifier_str_mv Rubio Lopez, Adrian Ezequiel; Lombardo, Fernando Cesar; Closed-time-path approach to the Casimir energy in real media; American Physical Society; Physical Review D; 89; 10; 5-2014; 1-26; 105026
0556-2821
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.89.105026
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.105026
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1404.7162
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613077769650176
score 13.070432