Statistical Thermodynamic Description of Self-Assembly of Large Inclusions in Biological Membranes

Autores
De Virgiliis, Andres; Meyra, Ariel German; Ciach, Alina
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Recent studies revealed anomalous underscreening in concentrated electrolytes, and we suggest that the underscreened electrostatic forces between membrane proteins play a significant role in the process of self-assembly. In this work, we assumed that the underscreened electrostatic forces compete with the thermodynamic Casimir forces induced by concentration fluctuations in the lipid bilayer, and developed a simplified model for a binary mixture of oppositely charged membrane proteins with different preference to liquid-ordered and liquid-disordered domains in the membrane. In the model, like macromolecules interact with short-range Casimir attraction and long-range electrostatic repulsion, and the cross-interaction is of the opposite sign. We determine energetically favored patterns in a system in equilibrium with a bulk reservoir of the macromolecules. Different patterns consisting of clusters and stripes of the two components and of vacancies are energetically favorable for different values of the chemical potentials. Effects of thermal flutuations at low temperature are studied using Monte Carlo simulations in grand canonical and canonical ensembles. For fixed numbers of the macromolecules, a single two-component cluster with a regular pattern coexists with dispersed small one-component clusters, and the number of small clusters depends on the ratio of the numbers of the molecules of the two components. Our results show that the pattern formation is controlled by the shape of the interactions, the density of the proteins, and the proportion of the components.
Fil: De Virgiliis, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Meyra, Ariel German. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Ciach, Alina. Polish Academy of Sciences; Argentina
Materia
Membrane protein
Spontaneous pattern formation
Inhomogeneous mixtures
Self-assembled
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/257320

id CONICETDig_0bc6c20450c4cf4c4e3c36b03202be30
oai_identifier_str oai:ri.conicet.gov.ar:11336/257320
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Statistical Thermodynamic Description of Self-Assembly of Large Inclusions in Biological MembranesDe Virgiliis, AndresMeyra, Ariel GermanCiach, AlinaMembrane proteinSpontaneous pattern formationInhomogeneous mixturesSelf-assembledhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Recent studies revealed anomalous underscreening in concentrated electrolytes, and we suggest that the underscreened electrostatic forces between membrane proteins play a significant role in the process of self-assembly. In this work, we assumed that the underscreened electrostatic forces compete with the thermodynamic Casimir forces induced by concentration fluctuations in the lipid bilayer, and developed a simplified model for a binary mixture of oppositely charged membrane proteins with different preference to liquid-ordered and liquid-disordered domains in the membrane. In the model, like macromolecules interact with short-range Casimir attraction and long-range electrostatic repulsion, and the cross-interaction is of the opposite sign. We determine energetically favored patterns in a system in equilibrium with a bulk reservoir of the macromolecules. Different patterns consisting of clusters and stripes of the two components and of vacancies are energetically favorable for different values of the chemical potentials. Effects of thermal flutuations at low temperature are studied using Monte Carlo simulations in grand canonical and canonical ensembles. For fixed numbers of the macromolecules, a single two-component cluster with a regular pattern coexists with dispersed small one-component clusters, and the number of small clusters depends on the ratio of the numbers of the molecules of the two components. Our results show that the pattern formation is controlled by the shape of the interactions, the density of the proteins, and the proportion of the components.Fil: De Virgiliis, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Meyra, Ariel German. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Ciach, Alina. Polish Academy of Sciences; ArgentinaMDPI2024-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/257320De Virgiliis, Andres; Meyra, Ariel German; Ciach, Alina; Statistical Thermodynamic Description of Self-Assembly of Large Inclusions in Biological Membranes; MDPI; Current Issues in Molecular Biology; 46; 10; 9-2024; 10829-108451467-3045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1467-3045/46/10/643info:eu-repo/semantics/altIdentifier/doi/10.3390/cimb46100643info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:14Zoai:ri.conicet.gov.ar:11336/257320instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:14.689CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Statistical Thermodynamic Description of Self-Assembly of Large Inclusions in Biological Membranes
title Statistical Thermodynamic Description of Self-Assembly of Large Inclusions in Biological Membranes
spellingShingle Statistical Thermodynamic Description of Self-Assembly of Large Inclusions in Biological Membranes
De Virgiliis, Andres
Membrane protein
Spontaneous pattern formation
Inhomogeneous mixtures
Self-assembled
title_short Statistical Thermodynamic Description of Self-Assembly of Large Inclusions in Biological Membranes
title_full Statistical Thermodynamic Description of Self-Assembly of Large Inclusions in Biological Membranes
title_fullStr Statistical Thermodynamic Description of Self-Assembly of Large Inclusions in Biological Membranes
title_full_unstemmed Statistical Thermodynamic Description of Self-Assembly of Large Inclusions in Biological Membranes
title_sort Statistical Thermodynamic Description of Self-Assembly of Large Inclusions in Biological Membranes
dc.creator.none.fl_str_mv De Virgiliis, Andres
Meyra, Ariel German
Ciach, Alina
author De Virgiliis, Andres
author_facet De Virgiliis, Andres
Meyra, Ariel German
Ciach, Alina
author_role author
author2 Meyra, Ariel German
Ciach, Alina
author2_role author
author
dc.subject.none.fl_str_mv Membrane protein
Spontaneous pattern formation
Inhomogeneous mixtures
Self-assembled
topic Membrane protein
Spontaneous pattern formation
Inhomogeneous mixtures
Self-assembled
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Recent studies revealed anomalous underscreening in concentrated electrolytes, and we suggest that the underscreened electrostatic forces between membrane proteins play a significant role in the process of self-assembly. In this work, we assumed that the underscreened electrostatic forces compete with the thermodynamic Casimir forces induced by concentration fluctuations in the lipid bilayer, and developed a simplified model for a binary mixture of oppositely charged membrane proteins with different preference to liquid-ordered and liquid-disordered domains in the membrane. In the model, like macromolecules interact with short-range Casimir attraction and long-range electrostatic repulsion, and the cross-interaction is of the opposite sign. We determine energetically favored patterns in a system in equilibrium with a bulk reservoir of the macromolecules. Different patterns consisting of clusters and stripes of the two components and of vacancies are energetically favorable for different values of the chemical potentials. Effects of thermal flutuations at low temperature are studied using Monte Carlo simulations in grand canonical and canonical ensembles. For fixed numbers of the macromolecules, a single two-component cluster with a regular pattern coexists with dispersed small one-component clusters, and the number of small clusters depends on the ratio of the numbers of the molecules of the two components. Our results show that the pattern formation is controlled by the shape of the interactions, the density of the proteins, and the proportion of the components.
Fil: De Virgiliis, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Meyra, Ariel German. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Ciach, Alina. Polish Academy of Sciences; Argentina
description Recent studies revealed anomalous underscreening in concentrated electrolytes, and we suggest that the underscreened electrostatic forces between membrane proteins play a significant role in the process of self-assembly. In this work, we assumed that the underscreened electrostatic forces compete with the thermodynamic Casimir forces induced by concentration fluctuations in the lipid bilayer, and developed a simplified model for a binary mixture of oppositely charged membrane proteins with different preference to liquid-ordered and liquid-disordered domains in the membrane. In the model, like macromolecules interact with short-range Casimir attraction and long-range electrostatic repulsion, and the cross-interaction is of the opposite sign. We determine energetically favored patterns in a system in equilibrium with a bulk reservoir of the macromolecules. Different patterns consisting of clusters and stripes of the two components and of vacancies are energetically favorable for different values of the chemical potentials. Effects of thermal flutuations at low temperature are studied using Monte Carlo simulations in grand canonical and canonical ensembles. For fixed numbers of the macromolecules, a single two-component cluster with a regular pattern coexists with dispersed small one-component clusters, and the number of small clusters depends on the ratio of the numbers of the molecules of the two components. Our results show that the pattern formation is controlled by the shape of the interactions, the density of the proteins, and the proportion of the components.
publishDate 2024
dc.date.none.fl_str_mv 2024-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/257320
De Virgiliis, Andres; Meyra, Ariel German; Ciach, Alina; Statistical Thermodynamic Description of Self-Assembly of Large Inclusions in Biological Membranes; MDPI; Current Issues in Molecular Biology; 46; 10; 9-2024; 10829-10845
1467-3045
CONICET Digital
CONICET
url http://hdl.handle.net/11336/257320
identifier_str_mv De Virgiliis, Andres; Meyra, Ariel German; Ciach, Alina; Statistical Thermodynamic Description of Self-Assembly of Large Inclusions in Biological Membranes; MDPI; Current Issues in Molecular Biology; 46; 10; 9-2024; 10829-10845
1467-3045
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1467-3045/46/10/643
info:eu-repo/semantics/altIdentifier/doi/10.3390/cimb46100643
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613331139166208
score 13.070432