Nanotubes for charge storage - Towards an atomistic model

Autores
Mohammadzadeh, Leila; Goduljan, Aleksej; Juarez, Fernanda; Quaino, Paola Monica; Santos, Elizabeth del Carmen; Schmickler, Wolfgang
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We examine the insertion of alkali and halide ions into narrow nanotubes of graphite and gold by density functional theory (DFT). For tubes with diameters less than about 10 Åthe optimum position of the ion is in the center of the tube. Bader analysis and an analysis of the densities of states gave contradictory results for the charge on the halide ions, but we argue on physical grounds that they carry unit negative charge. We have calculated the energies of inserting the atoms into the tubes, where they are ionized. Because of the small system size the work function of the tubes changes during this process, which makes it difficult to interpret these energies. The surrounding tubes screen the ionic charge very effectively; thereby the ion-ion interactions are strongly reduced, which explains, why narrow tubes store charge more effectively than wider one. These effects are stronger for gold than for graphite tubes. We define an effective image radius of a cylindrical tube, and calculate the image energy experienced by the ions.
Fil: Mohammadzadeh, Leila. Universidad de Ulm; Alemania
Fil: Goduljan, Aleksej. Universidad de Ulm; Alemania
Fil: Juarez, Fernanda. Universidad de Ulm; Alemania
Fil: Quaino, Paola Monica. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada e Ingeniería Electroquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Santos, Elizabeth del Carmen. Universidad de Ulm; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Schmickler, Wolfgang. Universidad de Ulm; Alemania
Materia
Charge Storage
Dft
Image Charge
Nanotubes
Screening
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/37622

id CONICETDig_0bbfa1ac8eae8b9aa342dc9b5c21ace0
oai_identifier_str oai:ri.conicet.gov.ar:11336/37622
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nanotubes for charge storage - Towards an atomistic modelMohammadzadeh, LeilaGoduljan, AleksejJuarez, FernandaQuaino, Paola MonicaSantos, Elizabeth del CarmenSchmickler, WolfgangCharge StorageDftImage ChargeNanotubesScreeninghttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We examine the insertion of alkali and halide ions into narrow nanotubes of graphite and gold by density functional theory (DFT). For tubes with diameters less than about 10 Åthe optimum position of the ion is in the center of the tube. Bader analysis and an analysis of the densities of states gave contradictory results for the charge on the halide ions, but we argue on physical grounds that they carry unit negative charge. We have calculated the energies of inserting the atoms into the tubes, where they are ionized. Because of the small system size the work function of the tubes changes during this process, which makes it difficult to interpret these energies. The surrounding tubes screen the ionic charge very effectively; thereby the ion-ion interactions are strongly reduced, which explains, why narrow tubes store charge more effectively than wider one. These effects are stronger for gold than for graphite tubes. We define an effective image radius of a cylindrical tube, and calculate the image energy experienced by the ions.Fil: Mohammadzadeh, Leila. Universidad de Ulm; AlemaniaFil: Goduljan, Aleksej. Universidad de Ulm; AlemaniaFil: Juarez, Fernanda. Universidad de Ulm; AlemaniaFil: Quaino, Paola Monica. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada e Ingeniería Electroquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Santos, Elizabeth del Carmen. Universidad de Ulm; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Schmickler, Wolfgang. Universidad de Ulm; AlemaniaPergamon-Elsevier Science Ltd2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37622Mohammadzadeh, Leila; Goduljan, Aleksej; Juarez, Fernanda; Quaino, Paola Monica; Santos, Elizabeth del Carmen; et al.; Nanotubes for charge storage - Towards an atomistic model; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 162; 4-2015; 11-160013-4686CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2014.12.031info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0013468614024669info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:17:05Zoai:ri.conicet.gov.ar:11336/37622instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:05.644CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nanotubes for charge storage - Towards an atomistic model
title Nanotubes for charge storage - Towards an atomistic model
spellingShingle Nanotubes for charge storage - Towards an atomistic model
Mohammadzadeh, Leila
Charge Storage
Dft
Image Charge
Nanotubes
Screening
title_short Nanotubes for charge storage - Towards an atomistic model
title_full Nanotubes for charge storage - Towards an atomistic model
title_fullStr Nanotubes for charge storage - Towards an atomistic model
title_full_unstemmed Nanotubes for charge storage - Towards an atomistic model
title_sort Nanotubes for charge storage - Towards an atomistic model
dc.creator.none.fl_str_mv Mohammadzadeh, Leila
Goduljan, Aleksej
Juarez, Fernanda
Quaino, Paola Monica
Santos, Elizabeth del Carmen
Schmickler, Wolfgang
author Mohammadzadeh, Leila
author_facet Mohammadzadeh, Leila
Goduljan, Aleksej
Juarez, Fernanda
Quaino, Paola Monica
Santos, Elizabeth del Carmen
Schmickler, Wolfgang
author_role author
author2 Goduljan, Aleksej
Juarez, Fernanda
Quaino, Paola Monica
Santos, Elizabeth del Carmen
Schmickler, Wolfgang
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Charge Storage
Dft
Image Charge
Nanotubes
Screening
topic Charge Storage
Dft
Image Charge
Nanotubes
Screening
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We examine the insertion of alkali and halide ions into narrow nanotubes of graphite and gold by density functional theory (DFT). For tubes with diameters less than about 10 Åthe optimum position of the ion is in the center of the tube. Bader analysis and an analysis of the densities of states gave contradictory results for the charge on the halide ions, but we argue on physical grounds that they carry unit negative charge. We have calculated the energies of inserting the atoms into the tubes, where they are ionized. Because of the small system size the work function of the tubes changes during this process, which makes it difficult to interpret these energies. The surrounding tubes screen the ionic charge very effectively; thereby the ion-ion interactions are strongly reduced, which explains, why narrow tubes store charge more effectively than wider one. These effects are stronger for gold than for graphite tubes. We define an effective image radius of a cylindrical tube, and calculate the image energy experienced by the ions.
Fil: Mohammadzadeh, Leila. Universidad de Ulm; Alemania
Fil: Goduljan, Aleksej. Universidad de Ulm; Alemania
Fil: Juarez, Fernanda. Universidad de Ulm; Alemania
Fil: Quaino, Paola Monica. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada e Ingeniería Electroquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Santos, Elizabeth del Carmen. Universidad de Ulm; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Schmickler, Wolfgang. Universidad de Ulm; Alemania
description We examine the insertion of alkali and halide ions into narrow nanotubes of graphite and gold by density functional theory (DFT). For tubes with diameters less than about 10 Åthe optimum position of the ion is in the center of the tube. Bader analysis and an analysis of the densities of states gave contradictory results for the charge on the halide ions, but we argue on physical grounds that they carry unit negative charge. We have calculated the energies of inserting the atoms into the tubes, where they are ionized. Because of the small system size the work function of the tubes changes during this process, which makes it difficult to interpret these energies. The surrounding tubes screen the ionic charge very effectively; thereby the ion-ion interactions are strongly reduced, which explains, why narrow tubes store charge more effectively than wider one. These effects are stronger for gold than for graphite tubes. We define an effective image radius of a cylindrical tube, and calculate the image energy experienced by the ions.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/37622
Mohammadzadeh, Leila; Goduljan, Aleksej; Juarez, Fernanda; Quaino, Paola Monica; Santos, Elizabeth del Carmen; et al.; Nanotubes for charge storage - Towards an atomistic model; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 162; 4-2015; 11-16
0013-4686
CONICET Digital
CONICET
url http://hdl.handle.net/11336/37622
identifier_str_mv Mohammadzadeh, Leila; Goduljan, Aleksej; Juarez, Fernanda; Quaino, Paola Monica; Santos, Elizabeth del Carmen; et al.; Nanotubes for charge storage - Towards an atomistic model; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 162; 4-2015; 11-16
0013-4686
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2014.12.031
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0013468614024669
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614120998961152
score 13.070432