A novel approach to arcing faults characterization using multivariable analysis and support vector machine
- Autores
- Morales Garcia, John Armando; Muñoz, Eduardo; Orduña, Eduardo Agustín; Idarraga Ospina, Gina Maria
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Based on the Institute of Electrical and Electronics Engineers (IEEE) Standard C37.104-2012 Power Systems Relaying Committee report, topics related to auto-reclosing in transmission lines have been considered as an imperative benefit for electric power systems. An important issue in reclosing, when performed correctly, is identifying the fault type, i.e., permanent or temporary, which keeps the faulted transmission line in service as long as possible. In this paper, a multivariable analysis was used to classify signals as permanent and temporary faults. Thus, by using a simple convolution process among the mother functions called eigenvectors and the fault signals from a single end, a dimensionality reduction was determined. In this manner, the feature classifier based on the support vector machine was used for acceptably classifying fault types. The algorithm was tested in different fault scenarios that considered several distances along the transmission line and representation of first and second arcs simulated in the alternative transients program ATP software. Therefore, the main contribution of the analysis performed in this paper is to propose a novel algorithm to discriminate permanent and temporary faults based on the behavior of the faulted phase voltage after single-phase opening of the circuit breakers. Several simulations let the authors conclude that the proposed algorithm is effective and reliable.
Fil: Morales Garcia, John Armando. Universidad Politecnica Salesiana; Ecuador. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Muñoz, Eduardo. Universidad Politecnica Salesiana; Ecuador
Fil: Orduña, Eduardo Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Idarraga Ospina, Gina Maria. Universidad Autónoma de Nuevo León; México - Materia
-
ARCING FAULT IDENTIFICATION
AUTORECLOSURE
RELAY
TRANSIENT ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/124804
Ver los metadatos del registro completo
| id |
CONICETDig_0b866db0a668ffd7442dce36b0a60dc0 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/124804 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A novel approach to arcing faults characterization using multivariable analysis and support vector machineMorales Garcia, John ArmandoMuñoz, EduardoOrduña, Eduardo AgustínIdarraga Ospina, Gina MariaARCING FAULT IDENTIFICATIONAUTORECLOSURERELAYTRANSIENT ANALYSIShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Based on the Institute of Electrical and Electronics Engineers (IEEE) Standard C37.104-2012 Power Systems Relaying Committee report, topics related to auto-reclosing in transmission lines have been considered as an imperative benefit for electric power systems. An important issue in reclosing, when performed correctly, is identifying the fault type, i.e., permanent or temporary, which keeps the faulted transmission line in service as long as possible. In this paper, a multivariable analysis was used to classify signals as permanent and temporary faults. Thus, by using a simple convolution process among the mother functions called eigenvectors and the fault signals from a single end, a dimensionality reduction was determined. In this manner, the feature classifier based on the support vector machine was used for acceptably classifying fault types. The algorithm was tested in different fault scenarios that considered several distances along the transmission line and representation of first and second arcs simulated in the alternative transients program ATP software. Therefore, the main contribution of the analysis performed in this paper is to propose a novel algorithm to discriminate permanent and temporary faults based on the behavior of the faulted phase voltage after single-phase opening of the circuit breakers. Several simulations let the authors conclude that the proposed algorithm is effective and reliable.Fil: Morales Garcia, John Armando. Universidad Politecnica Salesiana; Ecuador. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Muñoz, Eduardo. Universidad Politecnica Salesiana; EcuadorFil: Orduña, Eduardo Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Idarraga Ospina, Gina Maria. Universidad Autónoma de Nuevo León; MéxicoMDPI2019-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/124804Morales Garcia, John Armando; Muñoz, Eduardo; Orduña, Eduardo Agustín; Idarraga Ospina, Gina Maria; A novel approach to arcing faults characterization using multivariable analysis and support vector machine; MDPI; Energies; 12; 11; 6-2019; 1-211996-1073CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1073/12/11/2126info:eu-repo/semantics/altIdentifier/doi/10.3390/en12112126info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:25:53Zoai:ri.conicet.gov.ar:11336/124804instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:25:53.885CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A novel approach to arcing faults characterization using multivariable analysis and support vector machine |
| title |
A novel approach to arcing faults characterization using multivariable analysis and support vector machine |
| spellingShingle |
A novel approach to arcing faults characterization using multivariable analysis and support vector machine Morales Garcia, John Armando ARCING FAULT IDENTIFICATION AUTORECLOSURE RELAY TRANSIENT ANALYSIS |
| title_short |
A novel approach to arcing faults characterization using multivariable analysis and support vector machine |
| title_full |
A novel approach to arcing faults characterization using multivariable analysis and support vector machine |
| title_fullStr |
A novel approach to arcing faults characterization using multivariable analysis and support vector machine |
| title_full_unstemmed |
A novel approach to arcing faults characterization using multivariable analysis and support vector machine |
| title_sort |
A novel approach to arcing faults characterization using multivariable analysis and support vector machine |
| dc.creator.none.fl_str_mv |
Morales Garcia, John Armando Muñoz, Eduardo Orduña, Eduardo Agustín Idarraga Ospina, Gina Maria |
| author |
Morales Garcia, John Armando |
| author_facet |
Morales Garcia, John Armando Muñoz, Eduardo Orduña, Eduardo Agustín Idarraga Ospina, Gina Maria |
| author_role |
author |
| author2 |
Muñoz, Eduardo Orduña, Eduardo Agustín Idarraga Ospina, Gina Maria |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
ARCING FAULT IDENTIFICATION AUTORECLOSURE RELAY TRANSIENT ANALYSIS |
| topic |
ARCING FAULT IDENTIFICATION AUTORECLOSURE RELAY TRANSIENT ANALYSIS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Based on the Institute of Electrical and Electronics Engineers (IEEE) Standard C37.104-2012 Power Systems Relaying Committee report, topics related to auto-reclosing in transmission lines have been considered as an imperative benefit for electric power systems. An important issue in reclosing, when performed correctly, is identifying the fault type, i.e., permanent or temporary, which keeps the faulted transmission line in service as long as possible. In this paper, a multivariable analysis was used to classify signals as permanent and temporary faults. Thus, by using a simple convolution process among the mother functions called eigenvectors and the fault signals from a single end, a dimensionality reduction was determined. In this manner, the feature classifier based on the support vector machine was used for acceptably classifying fault types. The algorithm was tested in different fault scenarios that considered several distances along the transmission line and representation of first and second arcs simulated in the alternative transients program ATP software. Therefore, the main contribution of the analysis performed in this paper is to propose a novel algorithm to discriminate permanent and temporary faults based on the behavior of the faulted phase voltage after single-phase opening of the circuit breakers. Several simulations let the authors conclude that the proposed algorithm is effective and reliable. Fil: Morales Garcia, John Armando. Universidad Politecnica Salesiana; Ecuador. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina Fil: Muñoz, Eduardo. Universidad Politecnica Salesiana; Ecuador Fil: Orduña, Eduardo Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina Fil: Idarraga Ospina, Gina Maria. Universidad Autónoma de Nuevo León; México |
| description |
Based on the Institute of Electrical and Electronics Engineers (IEEE) Standard C37.104-2012 Power Systems Relaying Committee report, topics related to auto-reclosing in transmission lines have been considered as an imperative benefit for electric power systems. An important issue in reclosing, when performed correctly, is identifying the fault type, i.e., permanent or temporary, which keeps the faulted transmission line in service as long as possible. In this paper, a multivariable analysis was used to classify signals as permanent and temporary faults. Thus, by using a simple convolution process among the mother functions called eigenvectors and the fault signals from a single end, a dimensionality reduction was determined. In this manner, the feature classifier based on the support vector machine was used for acceptably classifying fault types. The algorithm was tested in different fault scenarios that considered several distances along the transmission line and representation of first and second arcs simulated in the alternative transients program ATP software. Therefore, the main contribution of the analysis performed in this paper is to propose a novel algorithm to discriminate permanent and temporary faults based on the behavior of the faulted phase voltage after single-phase opening of the circuit breakers. Several simulations let the authors conclude that the proposed algorithm is effective and reliable. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/124804 Morales Garcia, John Armando; Muñoz, Eduardo; Orduña, Eduardo Agustín; Idarraga Ospina, Gina Maria; A novel approach to arcing faults characterization using multivariable analysis and support vector machine; MDPI; Energies; 12; 11; 6-2019; 1-21 1996-1073 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/124804 |
| identifier_str_mv |
Morales Garcia, John Armando; Muñoz, Eduardo; Orduña, Eduardo Agustín; Idarraga Ospina, Gina Maria; A novel approach to arcing faults characterization using multivariable analysis and support vector machine; MDPI; Energies; 12; 11; 6-2019; 1-21 1996-1073 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1073/12/11/2126 info:eu-repo/semantics/altIdentifier/doi/10.3390/en12112126 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
MDPI |
| publisher.none.fl_str_mv |
MDPI |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781812382105600 |
| score |
12.982451 |