HMMER cut-off threshold tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold
- Autores
- Pagnuco, Inti Anabela; Revuelta, María Victoria; Bondino, Hernán Gabriel; Brun, Marcel; Ten Have, Arjen
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Protein superfamilies can be divided into subfamilies of proteins with different functional characteristics. Their sequences can be classified hierarchically, which is part of sequence function assignation. Typically, there are no clear subfamily hallmarks that would allow pattern-based function assignation by which this task is mostly achieved based on the similarity principle. This is hampered by the lack of a score cut-off that is both sensitive and specific. Results: HMMER Cut-off Threshold Tool (HMMERCTTER) adds a reliable cut-off threshold to the popular HMMER. Using a high quality superfamily phylogeny, it clusters a set of training sequences such that the cluster-specific HMMER profiles show cluster or subfamily member detection with 100% precision and recall (P&R), thereby generating a specific threshold as inclusion cut-off. Profiles and thresholds are then used as classifiers to screen a target dataset. Iterative inclusion of novel sequences to groups and the corresponding HMMER profiles results in high sensitivity while specificity is maintained by imposing 100% P&R self detection. In three presented case studies of protein superfamilies, classification of large datasets with 100% precision was achieved with over 95% recall. Limits and caveats are presented and explained. Conclusions: HMMERCTTER is a promising protein superfamily sequence classifier provided high quality training datasets are used. It provides a decision support system that aids in the difficult task of sequence function assignation in the twilight zone of sequence similarity. All relevant data and source codes are available from the Github repository at the following.
Fil: Pagnuco, Inti Anabela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina
Fil: Revuelta, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
Fil: Bondino, Hernán Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
Fil: Brun, Marcel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina
Fil: Ten Have, Arjen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina - Materia
-
Clustering
Classification
Phylogenomics
Bioinformatics
Function annotation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100949
Ver los metadatos del registro completo
id |
CONICETDig_0ac5008dfe9de37b43c9f04b853329a5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100949 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
HMMER cut-off threshold tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off thresholdPagnuco, Inti AnabelaRevuelta, María VictoriaBondino, Hernán GabrielBrun, MarcelTen Have, ArjenClusteringClassificationPhylogenomicsBioinformaticsFunction annotationhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Background: Protein superfamilies can be divided into subfamilies of proteins with different functional characteristics. Their sequences can be classified hierarchically, which is part of sequence function assignation. Typically, there are no clear subfamily hallmarks that would allow pattern-based function assignation by which this task is mostly achieved based on the similarity principle. This is hampered by the lack of a score cut-off that is both sensitive and specific. Results: HMMER Cut-off Threshold Tool (HMMERCTTER) adds a reliable cut-off threshold to the popular HMMER. Using a high quality superfamily phylogeny, it clusters a set of training sequences such that the cluster-specific HMMER profiles show cluster or subfamily member detection with 100% precision and recall (P&R), thereby generating a specific threshold as inclusion cut-off. Profiles and thresholds are then used as classifiers to screen a target dataset. Iterative inclusion of novel sequences to groups and the corresponding HMMER profiles results in high sensitivity while specificity is maintained by imposing 100% P&R self detection. In three presented case studies of protein superfamilies, classification of large datasets with 100% precision was achieved with over 95% recall. Limits and caveats are presented and explained. Conclusions: HMMERCTTER is a promising protein superfamily sequence classifier provided high quality training datasets are used. It provides a decision support system that aids in the difficult task of sequence function assignation in the twilight zone of sequence similarity. All relevant data and source codes are available from the Github repository at the following.Fil: Pagnuco, Inti Anabela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; ArgentinaFil: Revuelta, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Bondino, Hernán Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Brun, Marcel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; ArgentinaFil: Ten Have, Arjen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaPublic Library of Science2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100949Pagnuco, Inti Anabela; Revuelta, María Victoria; Bondino, Hernán Gabriel; Brun, Marcel; Ten Have, Arjen; HMMER cut-off threshold tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold; Public Library of Science; Plos One; 13; 3; 3-2018; 1-201932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193757info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0193757info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:47Zoai:ri.conicet.gov.ar:11336/100949instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:47.951CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
HMMER cut-off threshold tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold |
title |
HMMER cut-off threshold tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold |
spellingShingle |
HMMER cut-off threshold tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold Pagnuco, Inti Anabela Clustering Classification Phylogenomics Bioinformatics Function annotation |
title_short |
HMMER cut-off threshold tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold |
title_full |
HMMER cut-off threshold tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold |
title_fullStr |
HMMER cut-off threshold tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold |
title_full_unstemmed |
HMMER cut-off threshold tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold |
title_sort |
HMMER cut-off threshold tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold |
dc.creator.none.fl_str_mv |
Pagnuco, Inti Anabela Revuelta, María Victoria Bondino, Hernán Gabriel Brun, Marcel Ten Have, Arjen |
author |
Pagnuco, Inti Anabela |
author_facet |
Pagnuco, Inti Anabela Revuelta, María Victoria Bondino, Hernán Gabriel Brun, Marcel Ten Have, Arjen |
author_role |
author |
author2 |
Revuelta, María Victoria Bondino, Hernán Gabriel Brun, Marcel Ten Have, Arjen |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Clustering Classification Phylogenomics Bioinformatics Function annotation |
topic |
Clustering Classification Phylogenomics Bioinformatics Function annotation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Background: Protein superfamilies can be divided into subfamilies of proteins with different functional characteristics. Their sequences can be classified hierarchically, which is part of sequence function assignation. Typically, there are no clear subfamily hallmarks that would allow pattern-based function assignation by which this task is mostly achieved based on the similarity principle. This is hampered by the lack of a score cut-off that is both sensitive and specific. Results: HMMER Cut-off Threshold Tool (HMMERCTTER) adds a reliable cut-off threshold to the popular HMMER. Using a high quality superfamily phylogeny, it clusters a set of training sequences such that the cluster-specific HMMER profiles show cluster or subfamily member detection with 100% precision and recall (P&R), thereby generating a specific threshold as inclusion cut-off. Profiles and thresholds are then used as classifiers to screen a target dataset. Iterative inclusion of novel sequences to groups and the corresponding HMMER profiles results in high sensitivity while specificity is maintained by imposing 100% P&R self detection. In three presented case studies of protein superfamilies, classification of large datasets with 100% precision was achieved with over 95% recall. Limits and caveats are presented and explained. Conclusions: HMMERCTTER is a promising protein superfamily sequence classifier provided high quality training datasets are used. It provides a decision support system that aids in the difficult task of sequence function assignation in the twilight zone of sequence similarity. All relevant data and source codes are available from the Github repository at the following. Fil: Pagnuco, Inti Anabela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina Fil: Revuelta, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina Fil: Bondino, Hernán Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina Fil: Brun, Marcel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina Fil: Ten Have, Arjen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina |
description |
Background: Protein superfamilies can be divided into subfamilies of proteins with different functional characteristics. Their sequences can be classified hierarchically, which is part of sequence function assignation. Typically, there are no clear subfamily hallmarks that would allow pattern-based function assignation by which this task is mostly achieved based on the similarity principle. This is hampered by the lack of a score cut-off that is both sensitive and specific. Results: HMMER Cut-off Threshold Tool (HMMERCTTER) adds a reliable cut-off threshold to the popular HMMER. Using a high quality superfamily phylogeny, it clusters a set of training sequences such that the cluster-specific HMMER profiles show cluster or subfamily member detection with 100% precision and recall (P&R), thereby generating a specific threshold as inclusion cut-off. Profiles and thresholds are then used as classifiers to screen a target dataset. Iterative inclusion of novel sequences to groups and the corresponding HMMER profiles results in high sensitivity while specificity is maintained by imposing 100% P&R self detection. In three presented case studies of protein superfamilies, classification of large datasets with 100% precision was achieved with over 95% recall. Limits and caveats are presented and explained. Conclusions: HMMERCTTER is a promising protein superfamily sequence classifier provided high quality training datasets are used. It provides a decision support system that aids in the difficult task of sequence function assignation in the twilight zone of sequence similarity. All relevant data and source codes are available from the Github repository at the following. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100949 Pagnuco, Inti Anabela; Revuelta, María Victoria; Bondino, Hernán Gabriel; Brun, Marcel; Ten Have, Arjen; HMMER cut-off threshold tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold; Public Library of Science; Plos One; 13; 3; 3-2018; 1-20 1932-6203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100949 |
identifier_str_mv |
Pagnuco, Inti Anabela; Revuelta, María Victoria; Bondino, Hernán Gabriel; Brun, Marcel; Ten Have, Arjen; HMMER cut-off threshold tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold; Public Library of Science; Plos One; 13; 3; 3-2018; 1-20 1932-6203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193757 info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0193757 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613259064246272 |
score |
13.070432 |