Modeling the track of the GD-1 stellar stream inside a host with a fermionic dark matter core-halo distribution
- Autores
- Mestre, Martin Federico; Argüelles, Carlos Raúl; Carpintero, Daniel Diego; Crespi, Valentina; Krut, Andreas
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Context. Traditional studies of stellar streams typically involve phenomenological ΛCDM halos or ad hoc dark matter (DM) profiles with different degrees of triaxiality, which preclude us from gaining insights into the nature and mass of the DM particles. Recently, the maximum entropy principle of halo formation has been applied to provide a DM halo model that incorporates the fermionic (quantum) nature of the particles while leading to DM profiles that depend on the fermion mass. These profiles develop a more general “dense core – diluted halo” morphology that can explain the Galactic rotation curve, while the degenerate fermion core can mimic the central massive black hole (BH). Aims. We model the GD-1 stellar stream using a spherical core-halo DM distribution for the host that simultaneously explains the dynamics of the S-cluster stars through its degenerate fermion core without a central BH. Methods. We used two optimization algorithms in order to fit both the initial conditions of the stream orbit and the fermionic model. We modeled the baryonic potential with a bulge and two disks (thin and thick) with fixed parameters according to the recent literature. The stream observables were 5D phase-space data from the Gaia DR2 survey. Results. We were able to find good fits for both the GD-1 stream and the S-stars for a family of fermionic core-halo profiles parameterized by the fermion mass. The particle masses are constrained in the range 56 keV c−2, with a corresponding DM core of ∼103 Schwarzschild radii, to 360 keV c−2, which corresponds to the most compact core of 5 Schwarzschild radii prior to the gravitational collapse into a BH of about 4 × 106 M⊙. Conclusions. This work provides evidence that the fermionic profile is a reliable model for the massive central object and for the DM of the Galaxy. Remarkably, this model predicts a total Milky Way mass of 2.3 × 1011 M⊙, which agrees with recent mass estimates obtained from Gaia DR3 rotation curves (Gaia RC). In summary, with one single fermionic model for the DM distribution of the Milky Way, we obtain a good fit on three totally different distance scales of the Galaxy: ∼10−6 kpc (central, S-stars), ∼14 kpc (middle, GD-1), and ∼30 kpc (boundary, Gaia RC mass estimate).
Fil: Mestre, Martin Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Argüelles, Carlos Raúl. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Carpintero, Daniel Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Crespi, Valentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Krut, Andreas. Università degli studi di Roma "La Sapienza"; Italia - Materia
-
ASTROPHYSICS - ASTROPHYSICS OF GALAXIES
GENERAL RELATIVITY AND QUANTUM COSMOLOGY
QUANTUM PHYSICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/246243
Ver los metadatos del registro completo
id |
CONICETDig_098d55a1c1ac883a36a9737aece225bc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/246243 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modeling the track of the GD-1 stellar stream inside a host with a fermionic dark matter core-halo distributionMestre, Martin FedericoArgüelles, Carlos RaúlCarpintero, Daniel DiegoCrespi, ValentinaKrut, AndreasASTROPHYSICS - ASTROPHYSICS OF GALAXIESGENERAL RELATIVITY AND QUANTUM COSMOLOGYQUANTUM PHYSICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. Traditional studies of stellar streams typically involve phenomenological ΛCDM halos or ad hoc dark matter (DM) profiles with different degrees of triaxiality, which preclude us from gaining insights into the nature and mass of the DM particles. Recently, the maximum entropy principle of halo formation has been applied to provide a DM halo model that incorporates the fermionic (quantum) nature of the particles while leading to DM profiles that depend on the fermion mass. These profiles develop a more general “dense core – diluted halo” morphology that can explain the Galactic rotation curve, while the degenerate fermion core can mimic the central massive black hole (BH). Aims. We model the GD-1 stellar stream using a spherical core-halo DM distribution for the host that simultaneously explains the dynamics of the S-cluster stars through its degenerate fermion core without a central BH. Methods. We used two optimization algorithms in order to fit both the initial conditions of the stream orbit and the fermionic model. We modeled the baryonic potential with a bulge and two disks (thin and thick) with fixed parameters according to the recent literature. The stream observables were 5D phase-space data from the Gaia DR2 survey. Results. We were able to find good fits for both the GD-1 stream and the S-stars for a family of fermionic core-halo profiles parameterized by the fermion mass. The particle masses are constrained in the range 56 keV c−2, with a corresponding DM core of ∼103 Schwarzschild radii, to 360 keV c−2, which corresponds to the most compact core of 5 Schwarzschild radii prior to the gravitational collapse into a BH of about 4 × 106 M⊙. Conclusions. This work provides evidence that the fermionic profile is a reliable model for the massive central object and for the DM of the Galaxy. Remarkably, this model predicts a total Milky Way mass of 2.3 × 1011 M⊙, which agrees with recent mass estimates obtained from Gaia DR3 rotation curves (Gaia RC). In summary, with one single fermionic model for the DM distribution of the Milky Way, we obtain a good fit on three totally different distance scales of the Galaxy: ∼10−6 kpc (central, S-stars), ∼14 kpc (middle, GD-1), and ∼30 kpc (boundary, Gaia RC mass estimate).Fil: Mestre, Martin Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Argüelles, Carlos Raúl. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Carpintero, Daniel Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Crespi, Valentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Krut, Andreas. Università degli studi di Roma "La Sapienza"; ItaliaEDP Sciences2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/246243Mestre, Martin Federico; Argüelles, Carlos Raúl; Carpintero, Daniel Diego; Crespi, Valentina; Krut, Andreas; Modeling the track of the GD-1 stellar stream inside a host with a fermionic dark matter core-halo distribution; EDP Sciences; Astronomy and Astrophysics; 689; A194; 6-2024; 1-110004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202348626info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202348626info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:54Zoai:ri.conicet.gov.ar:11336/246243instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:55.203CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modeling the track of the GD-1 stellar stream inside a host with a fermionic dark matter core-halo distribution |
title |
Modeling the track of the GD-1 stellar stream inside a host with a fermionic dark matter core-halo distribution |
spellingShingle |
Modeling the track of the GD-1 stellar stream inside a host with a fermionic dark matter core-halo distribution Mestre, Martin Federico ASTROPHYSICS - ASTROPHYSICS OF GALAXIES GENERAL RELATIVITY AND QUANTUM COSMOLOGY QUANTUM PHYSICS |
title_short |
Modeling the track of the GD-1 stellar stream inside a host with a fermionic dark matter core-halo distribution |
title_full |
Modeling the track of the GD-1 stellar stream inside a host with a fermionic dark matter core-halo distribution |
title_fullStr |
Modeling the track of the GD-1 stellar stream inside a host with a fermionic dark matter core-halo distribution |
title_full_unstemmed |
Modeling the track of the GD-1 stellar stream inside a host with a fermionic dark matter core-halo distribution |
title_sort |
Modeling the track of the GD-1 stellar stream inside a host with a fermionic dark matter core-halo distribution |
dc.creator.none.fl_str_mv |
Mestre, Martin Federico Argüelles, Carlos Raúl Carpintero, Daniel Diego Crespi, Valentina Krut, Andreas |
author |
Mestre, Martin Federico |
author_facet |
Mestre, Martin Federico Argüelles, Carlos Raúl Carpintero, Daniel Diego Crespi, Valentina Krut, Andreas |
author_role |
author |
author2 |
Argüelles, Carlos Raúl Carpintero, Daniel Diego Crespi, Valentina Krut, Andreas |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
ASTROPHYSICS - ASTROPHYSICS OF GALAXIES GENERAL RELATIVITY AND QUANTUM COSMOLOGY QUANTUM PHYSICS |
topic |
ASTROPHYSICS - ASTROPHYSICS OF GALAXIES GENERAL RELATIVITY AND QUANTUM COSMOLOGY QUANTUM PHYSICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Context. Traditional studies of stellar streams typically involve phenomenological ΛCDM halos or ad hoc dark matter (DM) profiles with different degrees of triaxiality, which preclude us from gaining insights into the nature and mass of the DM particles. Recently, the maximum entropy principle of halo formation has been applied to provide a DM halo model that incorporates the fermionic (quantum) nature of the particles while leading to DM profiles that depend on the fermion mass. These profiles develop a more general “dense core – diluted halo” morphology that can explain the Galactic rotation curve, while the degenerate fermion core can mimic the central massive black hole (BH). Aims. We model the GD-1 stellar stream using a spherical core-halo DM distribution for the host that simultaneously explains the dynamics of the S-cluster stars through its degenerate fermion core without a central BH. Methods. We used two optimization algorithms in order to fit both the initial conditions of the stream orbit and the fermionic model. We modeled the baryonic potential with a bulge and two disks (thin and thick) with fixed parameters according to the recent literature. The stream observables were 5D phase-space data from the Gaia DR2 survey. Results. We were able to find good fits for both the GD-1 stream and the S-stars for a family of fermionic core-halo profiles parameterized by the fermion mass. The particle masses are constrained in the range 56 keV c−2, with a corresponding DM core of ∼103 Schwarzschild radii, to 360 keV c−2, which corresponds to the most compact core of 5 Schwarzschild radii prior to the gravitational collapse into a BH of about 4 × 106 M⊙. Conclusions. This work provides evidence that the fermionic profile is a reliable model for the massive central object and for the DM of the Galaxy. Remarkably, this model predicts a total Milky Way mass of 2.3 × 1011 M⊙, which agrees with recent mass estimates obtained from Gaia DR3 rotation curves (Gaia RC). In summary, with one single fermionic model for the DM distribution of the Milky Way, we obtain a good fit on three totally different distance scales of the Galaxy: ∼10−6 kpc (central, S-stars), ∼14 kpc (middle, GD-1), and ∼30 kpc (boundary, Gaia RC mass estimate). Fil: Mestre, Martin Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina Fil: Argüelles, Carlos Raúl. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina Fil: Carpintero, Daniel Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina Fil: Crespi, Valentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Krut, Andreas. Università degli studi di Roma "La Sapienza"; Italia |
description |
Context. Traditional studies of stellar streams typically involve phenomenological ΛCDM halos or ad hoc dark matter (DM) profiles with different degrees of triaxiality, which preclude us from gaining insights into the nature and mass of the DM particles. Recently, the maximum entropy principle of halo formation has been applied to provide a DM halo model that incorporates the fermionic (quantum) nature of the particles while leading to DM profiles that depend on the fermion mass. These profiles develop a more general “dense core – diluted halo” morphology that can explain the Galactic rotation curve, while the degenerate fermion core can mimic the central massive black hole (BH). Aims. We model the GD-1 stellar stream using a spherical core-halo DM distribution for the host that simultaneously explains the dynamics of the S-cluster stars through its degenerate fermion core without a central BH. Methods. We used two optimization algorithms in order to fit both the initial conditions of the stream orbit and the fermionic model. We modeled the baryonic potential with a bulge and two disks (thin and thick) with fixed parameters according to the recent literature. The stream observables were 5D phase-space data from the Gaia DR2 survey. Results. We were able to find good fits for both the GD-1 stream and the S-stars for a family of fermionic core-halo profiles parameterized by the fermion mass. The particle masses are constrained in the range 56 keV c−2, with a corresponding DM core of ∼103 Schwarzschild radii, to 360 keV c−2, which corresponds to the most compact core of 5 Schwarzschild radii prior to the gravitational collapse into a BH of about 4 × 106 M⊙. Conclusions. This work provides evidence that the fermionic profile is a reliable model for the massive central object and for the DM of the Galaxy. Remarkably, this model predicts a total Milky Way mass of 2.3 × 1011 M⊙, which agrees with recent mass estimates obtained from Gaia DR3 rotation curves (Gaia RC). In summary, with one single fermionic model for the DM distribution of the Milky Way, we obtain a good fit on three totally different distance scales of the Galaxy: ∼10−6 kpc (central, S-stars), ∼14 kpc (middle, GD-1), and ∼30 kpc (boundary, Gaia RC mass estimate). |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/246243 Mestre, Martin Federico; Argüelles, Carlos Raúl; Carpintero, Daniel Diego; Crespi, Valentina; Krut, Andreas; Modeling the track of the GD-1 stellar stream inside a host with a fermionic dark matter core-halo distribution; EDP Sciences; Astronomy and Astrophysics; 689; A194; 6-2024; 1-11 0004-6361 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/246243 |
identifier_str_mv |
Mestre, Martin Federico; Argüelles, Carlos Raúl; Carpintero, Daniel Diego; Crespi, Valentina; Krut, Andreas; Modeling the track of the GD-1 stellar stream inside a host with a fermionic dark matter core-halo distribution; EDP Sciences; Astronomy and Astrophysics; 689; A194; 6-2024; 1-11 0004-6361 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202348626 info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202348626 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613900689997824 |
score |
13.070432 |