Solute effects on edge dislocation pinning in complex alpha-Fe alloys

Autores
Pascuet, Maria Ines Magdalena; Martínez, E.; Monnet, G.; Malerba, L.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Reactor pressure vessel steels are well-known to harden and embrittle under neutron irradiation, mainly because of the formation of obstacles to the motion of dislocations, in particular, precipitates and clusters composed of Cu, Ni, Mn, Si and P. In this paper, we employ two complementary atomistic modelling techniques to study the heterogeneous precipitation and segregation of these elements and their effects on the edge dislocations in BCC iron. We use a special and highly computationally efficient Monte Carlo algorithm in a constrained semi-grand canonical ensemble to compute the equilibrium configurations for solute clusters around the dislocation core. Next, we use standard molecular dynamics to predict and analyze the effect of this segregation on the dislocation mobility. Consistently with expectations our results confirm that the required stress for dislocation unpinning from the precipitates formed on top of it is quite large. The identification of the precipitate resistance allows a quantitative treatment of atomistic results, enabling scale transition towards larger scale simulations, such as dislocation dynamics or phase field.
Fil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Centro Atomico Constituyentes. Departamento de Materiales; Argentina
Fil: Martínez, E.. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Monnet, G.. EDF–R&D; Francia
Fil: Malerba, L.. SCK•CEN. Structural Materials Expert Group. Nuclear Materials Institute; Bélgica
Materia
IRON ALLOYS
SEGREGATION
EDGE DISLOCATION MOBILITY
MONTE CARLO
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/41218

id CONICETDig_09601d4463d7180dec29e31553c99f5c
oai_identifier_str oai:ri.conicet.gov.ar:11336/41218
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Solute effects on edge dislocation pinning in complex alpha-Fe alloysPascuet, Maria Ines MagdalenaMartínez, E.Monnet, G.Malerba, L.IRON ALLOYSSEGREGATIONEDGE DISLOCATION MOBILITYMONTE CARLOReactor pressure vessel steels are well-known to harden and embrittle under neutron irradiation, mainly because of the formation of obstacles to the motion of dislocations, in particular, precipitates and clusters composed of Cu, Ni, Mn, Si and P. In this paper, we employ two complementary atomistic modelling techniques to study the heterogeneous precipitation and segregation of these elements and their effects on the edge dislocations in BCC iron. We use a special and highly computationally efficient Monte Carlo algorithm in a constrained semi-grand canonical ensemble to compute the equilibrium configurations for solute clusters around the dislocation core. Next, we use standard molecular dynamics to predict and analyze the effect of this segregation on the dislocation mobility. Consistently with expectations our results confirm that the required stress for dislocation unpinning from the precipitates formed on top of it is quite large. The identification of the precipitate resistance allows a quantitative treatment of atomistic results, enabling scale transition towards larger scale simulations, such as dislocation dynamics or phase field.Fil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Centro Atomico Constituyentes. Departamento de Materiales; ArgentinaFil: Martínez, E.. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Monnet, G.. EDF–R&D; FranciaFil: Malerba, L.. SCK•CEN. Structural Materials Expert Group. Nuclear Materials Institute; BélgicaElsevier Science2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41218Pascuet, Maria Ines Magdalena; Martínez, E.; Monnet, G.; Malerba, L.; Solute effects on edge dislocation pinning in complex alpha-Fe alloys; Elsevier Science; Journal of Nuclear Materials; 494; 10-2017; 311-3210022-3115CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022311517302441info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jnucmat.2017.07.049info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:03Zoai:ri.conicet.gov.ar:11336/41218instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:03.819CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Solute effects on edge dislocation pinning in complex alpha-Fe alloys
title Solute effects on edge dislocation pinning in complex alpha-Fe alloys
spellingShingle Solute effects on edge dislocation pinning in complex alpha-Fe alloys
Pascuet, Maria Ines Magdalena
IRON ALLOYS
SEGREGATION
EDGE DISLOCATION MOBILITY
MONTE CARLO
title_short Solute effects on edge dislocation pinning in complex alpha-Fe alloys
title_full Solute effects on edge dislocation pinning in complex alpha-Fe alloys
title_fullStr Solute effects on edge dislocation pinning in complex alpha-Fe alloys
title_full_unstemmed Solute effects on edge dislocation pinning in complex alpha-Fe alloys
title_sort Solute effects on edge dislocation pinning in complex alpha-Fe alloys
dc.creator.none.fl_str_mv Pascuet, Maria Ines Magdalena
Martínez, E.
Monnet, G.
Malerba, L.
author Pascuet, Maria Ines Magdalena
author_facet Pascuet, Maria Ines Magdalena
Martínez, E.
Monnet, G.
Malerba, L.
author_role author
author2 Martínez, E.
Monnet, G.
Malerba, L.
author2_role author
author
author
dc.subject.none.fl_str_mv IRON ALLOYS
SEGREGATION
EDGE DISLOCATION MOBILITY
MONTE CARLO
topic IRON ALLOYS
SEGREGATION
EDGE DISLOCATION MOBILITY
MONTE CARLO
dc.description.none.fl_txt_mv Reactor pressure vessel steels are well-known to harden and embrittle under neutron irradiation, mainly because of the formation of obstacles to the motion of dislocations, in particular, precipitates and clusters composed of Cu, Ni, Mn, Si and P. In this paper, we employ two complementary atomistic modelling techniques to study the heterogeneous precipitation and segregation of these elements and their effects on the edge dislocations in BCC iron. We use a special and highly computationally efficient Monte Carlo algorithm in a constrained semi-grand canonical ensemble to compute the equilibrium configurations for solute clusters around the dislocation core. Next, we use standard molecular dynamics to predict and analyze the effect of this segregation on the dislocation mobility. Consistently with expectations our results confirm that the required stress for dislocation unpinning from the precipitates formed on top of it is quite large. The identification of the precipitate resistance allows a quantitative treatment of atomistic results, enabling scale transition towards larger scale simulations, such as dislocation dynamics or phase field.
Fil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Centro Atomico Constituyentes. Departamento de Materiales; Argentina
Fil: Martínez, E.. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Monnet, G.. EDF–R&D; Francia
Fil: Malerba, L.. SCK•CEN. Structural Materials Expert Group. Nuclear Materials Institute; Bélgica
description Reactor pressure vessel steels are well-known to harden and embrittle under neutron irradiation, mainly because of the formation of obstacles to the motion of dislocations, in particular, precipitates and clusters composed of Cu, Ni, Mn, Si and P. In this paper, we employ two complementary atomistic modelling techniques to study the heterogeneous precipitation and segregation of these elements and their effects on the edge dislocations in BCC iron. We use a special and highly computationally efficient Monte Carlo algorithm in a constrained semi-grand canonical ensemble to compute the equilibrium configurations for solute clusters around the dislocation core. Next, we use standard molecular dynamics to predict and analyze the effect of this segregation on the dislocation mobility. Consistently with expectations our results confirm that the required stress for dislocation unpinning from the precipitates formed on top of it is quite large. The identification of the precipitate resistance allows a quantitative treatment of atomistic results, enabling scale transition towards larger scale simulations, such as dislocation dynamics or phase field.
publishDate 2017
dc.date.none.fl_str_mv 2017-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/41218
Pascuet, Maria Ines Magdalena; Martínez, E.; Monnet, G.; Malerba, L.; Solute effects on edge dislocation pinning in complex alpha-Fe alloys; Elsevier Science; Journal of Nuclear Materials; 494; 10-2017; 311-321
0022-3115
CONICET Digital
CONICET
url http://hdl.handle.net/11336/41218
identifier_str_mv Pascuet, Maria Ines Magdalena; Martínez, E.; Monnet, G.; Malerba, L.; Solute effects on edge dislocation pinning in complex alpha-Fe alloys; Elsevier Science; Journal of Nuclear Materials; 494; 10-2017; 311-321
0022-3115
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022311517302441
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jnucmat.2017.07.049
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613466554368000
score 13.070432