Noise-assisted estimation of attractor invariants
- Autores
- Restrepo Rinckoar, Juan Felipe; Schlotthauer, Gaston
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article, the noise-assisted correlation integral (NCI) is proposed. The purpose of the NCI is to estimate the invariants of a dynamical system, namely the correlation dimension (D), the correlation entropy (K2), and the noise level (σ). This correlation integral is induced by using random noise in a modified version of the correlation algorithm, i.e., the noise-assisted correlation algorithm. We demonstrate how the correlation integral by Grassberger et al. and the Gaussian kernel correlation integral (GCI) by Diks can be thought of as special cases of the NCI. A third particular case is the U-correlation integral proposed herein, from which we derived coarse-grained estimators of the correlation dimension (DmU), the correlation entropy (KmU), and the noise level (σmU). Using time series from the Henon map and the Mackey-Glass system, we analyze the behavior of these estimators under different noise conditions and data lengths. The results show that the estimators DmU and σmU behave in a similar manner to those based on the GCI. However, for the calculation of K2, the estimator KmU outperforms its GCI-based counterpart. On the basis of the behavior of these estimators, we have proposed an automatic algorithm to find D,K2, and σ from a given time series. The results show that by using this approach, we are able to achieve statistically reliable estimations of those invariants.
Fil: Restrepo Rinckoar, Juan Felipe. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Entre Ríos. Universidad Nacional de Entre Ríos. Centro de Investigaciones y Transferencia de Entre Ríos; Argentina - Materia
-
CORRELATION DIMENSION
CORRELATION ENTROPY
CORRELATION INTEGRAL
NOISE-ASSISTED CORRELATION INTEGRAL
U CORRELATION INTEGRAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/113842
Ver los metadatos del registro completo
id |
CONICETDig_095cc8eff24a50b173f9cb0146aeb1e2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/113842 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Noise-assisted estimation of attractor invariantsRestrepo Rinckoar, Juan FelipeSchlotthauer, GastonCORRELATION DIMENSIONCORRELATION ENTROPYCORRELATION INTEGRALNOISE-ASSISTED CORRELATION INTEGRALU CORRELATION INTEGRALhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this article, the noise-assisted correlation integral (NCI) is proposed. The purpose of the NCI is to estimate the invariants of a dynamical system, namely the correlation dimension (D), the correlation entropy (K2), and the noise level (σ). This correlation integral is induced by using random noise in a modified version of the correlation algorithm, i.e., the noise-assisted correlation algorithm. We demonstrate how the correlation integral by Grassberger et al. and the Gaussian kernel correlation integral (GCI) by Diks can be thought of as special cases of the NCI. A third particular case is the U-correlation integral proposed herein, from which we derived coarse-grained estimators of the correlation dimension (DmU), the correlation entropy (KmU), and the noise level (σmU). Using time series from the Henon map and the Mackey-Glass system, we analyze the behavior of these estimators under different noise conditions and data lengths. The results show that the estimators DmU and σmU behave in a similar manner to those based on the GCI. However, for the calculation of K2, the estimator KmU outperforms its GCI-based counterpart. On the basis of the behavior of these estimators, we have proposed an automatic algorithm to find D,K2, and σ from a given time series. The results show that by using this approach, we are able to achieve statistically reliable estimations of those invariants.Fil: Restrepo Rinckoar, Juan Felipe. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Entre Ríos. Universidad Nacional de Entre Ríos. Centro de Investigaciones y Transferencia de Entre Ríos; ArgentinaAmerican Physical Society2016-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113842Restrepo Rinckoar, Juan Felipe; Schlotthauer, Gaston; Noise-assisted estimation of attractor invariants; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 94; 1; 6-2016; 12212-122311539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.94.012212info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.012212info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:59:10Zoai:ri.conicet.gov.ar:11336/113842instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:59:10.992CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Noise-assisted estimation of attractor invariants |
title |
Noise-assisted estimation of attractor invariants |
spellingShingle |
Noise-assisted estimation of attractor invariants Restrepo Rinckoar, Juan Felipe CORRELATION DIMENSION CORRELATION ENTROPY CORRELATION INTEGRAL NOISE-ASSISTED CORRELATION INTEGRAL U CORRELATION INTEGRAL |
title_short |
Noise-assisted estimation of attractor invariants |
title_full |
Noise-assisted estimation of attractor invariants |
title_fullStr |
Noise-assisted estimation of attractor invariants |
title_full_unstemmed |
Noise-assisted estimation of attractor invariants |
title_sort |
Noise-assisted estimation of attractor invariants |
dc.creator.none.fl_str_mv |
Restrepo Rinckoar, Juan Felipe Schlotthauer, Gaston |
author |
Restrepo Rinckoar, Juan Felipe |
author_facet |
Restrepo Rinckoar, Juan Felipe Schlotthauer, Gaston |
author_role |
author |
author2 |
Schlotthauer, Gaston |
author2_role |
author |
dc.subject.none.fl_str_mv |
CORRELATION DIMENSION CORRELATION ENTROPY CORRELATION INTEGRAL NOISE-ASSISTED CORRELATION INTEGRAL U CORRELATION INTEGRAL |
topic |
CORRELATION DIMENSION CORRELATION ENTROPY CORRELATION INTEGRAL NOISE-ASSISTED CORRELATION INTEGRAL U CORRELATION INTEGRAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this article, the noise-assisted correlation integral (NCI) is proposed. The purpose of the NCI is to estimate the invariants of a dynamical system, namely the correlation dimension (D), the correlation entropy (K2), and the noise level (σ). This correlation integral is induced by using random noise in a modified version of the correlation algorithm, i.e., the noise-assisted correlation algorithm. We demonstrate how the correlation integral by Grassberger et al. and the Gaussian kernel correlation integral (GCI) by Diks can be thought of as special cases of the NCI. A third particular case is the U-correlation integral proposed herein, from which we derived coarse-grained estimators of the correlation dimension (DmU), the correlation entropy (KmU), and the noise level (σmU). Using time series from the Henon map and the Mackey-Glass system, we analyze the behavior of these estimators under different noise conditions and data lengths. The results show that the estimators DmU and σmU behave in a similar manner to those based on the GCI. However, for the calculation of K2, the estimator KmU outperforms its GCI-based counterpart. On the basis of the behavior of these estimators, we have proposed an automatic algorithm to find D,K2, and σ from a given time series. The results show that by using this approach, we are able to achieve statistically reliable estimations of those invariants. Fil: Restrepo Rinckoar, Juan Felipe. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Entre Ríos. Universidad Nacional de Entre Ríos. Centro de Investigaciones y Transferencia de Entre Ríos; Argentina |
description |
In this article, the noise-assisted correlation integral (NCI) is proposed. The purpose of the NCI is to estimate the invariants of a dynamical system, namely the correlation dimension (D), the correlation entropy (K2), and the noise level (σ). This correlation integral is induced by using random noise in a modified version of the correlation algorithm, i.e., the noise-assisted correlation algorithm. We demonstrate how the correlation integral by Grassberger et al. and the Gaussian kernel correlation integral (GCI) by Diks can be thought of as special cases of the NCI. A third particular case is the U-correlation integral proposed herein, from which we derived coarse-grained estimators of the correlation dimension (DmU), the correlation entropy (KmU), and the noise level (σmU). Using time series from the Henon map and the Mackey-Glass system, we analyze the behavior of these estimators under different noise conditions and data lengths. The results show that the estimators DmU and σmU behave in a similar manner to those based on the GCI. However, for the calculation of K2, the estimator KmU outperforms its GCI-based counterpart. On the basis of the behavior of these estimators, we have proposed an automatic algorithm to find D,K2, and σ from a given time series. The results show that by using this approach, we are able to achieve statistically reliable estimations of those invariants. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/113842 Restrepo Rinckoar, Juan Felipe; Schlotthauer, Gaston; Noise-assisted estimation of attractor invariants; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 94; 1; 6-2016; 12212-12231 1539-3755 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/113842 |
identifier_str_mv |
Restrepo Rinckoar, Juan Felipe; Schlotthauer, Gaston; Noise-assisted estimation of attractor invariants; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 94; 1; 6-2016; 12212-12231 1539-3755 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.94.012212 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.012212 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083132960276480 |
score |
13.22299 |