Characterizing inertial and convective optical turbulence by detrended fluctuation analysis
- Autores
- Funes, Gustavo Luis; Figueroa, Eduardo; Gulich, Maximiliano Damián; Zunino, Luciano José; Pérez, Darío
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Atmospheric turbulence is usually simulated at the laboratory by generating convective free flows with hot surfaces, or heaters. It is tacitly assumed that propagation experiments in this environment are comparable to those usually found outdoors. Nevertheless, it is unclear under which conditions the analogy between convective and isotropic turbulence is valid; that is, obeying Kolmogorov isotropic models. For instance, near-ground-level turbulence often is driven by shear ratchets deviating from established inertial models. In this case, a value for the structure constant can be obtained but it would be unable to distinguish between both classes of turbulence. We have performed a conceptually simple experiment of laser beam propagation through two types of artificial turbulence: isotropic turbulence generated by a turbulator [Proc. SPIE 8535, 853508 (2012)], and convective turbulence by controlling the temperature of electric heaters. In both cases, a thin laser beam propagates across the turbulent path, and its wandering is registered by a position sensor detector. The strength of the optical turbulence, in terms of the structure constant, is obtained from the wandering variance. It is expressed as a function of the temperature difference between cold and hot sources in each setup. We compare the time series behaviour for each turbulence with increasing turbulence strength by estimating the Hurst exponent, H, through detrended fluctuation analysis (DFA). Refractive index fluctuations are inherently fractal; this characteristic is reflected in their spectra power-law dependence --- in the inertial range. This fractal behaviour is inherited by time series of optical quantities, such as the wandering, by the occurrence of long-range correlations. By analyzing the wandering time series with this technique, we are able to correlate the turbulence strength to the value of the Hurt exponent. Ultimately, we characterize both types of turbulence.
Fil: Funes, Gustavo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina
Fil: Figueroa, Eduardo. Pontificia Universidad Catolica de Valparaiso; Chile
Fil: Gulich, Maximiliano Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Pérez, Darío. Pontificia Universidad Catolica de Valparaiso; Chile - Materia
-
Multifractal Detrended Fluctuation Analysis
Hurst Exponent
Beam Wandering
Angle-Of-Arrival
Non-Kolmogorov Turbulence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/7433
Ver los metadatos del registro completo
id |
CONICETDig_0954d482a61599bdcf1863fc985f0d6f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/7433 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Characterizing inertial and convective optical turbulence by detrended fluctuation analysisFunes, Gustavo LuisFigueroa, EduardoGulich, Maximiliano DamiánZunino, Luciano JoséPérez, DaríoMultifractal Detrended Fluctuation AnalysisHurst ExponentBeam WanderingAngle-Of-ArrivalNon-Kolmogorov Turbulencehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Atmospheric turbulence is usually simulated at the laboratory by generating convective free flows with hot surfaces, or heaters. It is tacitly assumed that propagation experiments in this environment are comparable to those usually found outdoors. Nevertheless, it is unclear under which conditions the analogy between convective and isotropic turbulence is valid; that is, obeying Kolmogorov isotropic models. For instance, near-ground-level turbulence often is driven by shear ratchets deviating from established inertial models. In this case, a value for the structure constant can be obtained but it would be unable to distinguish between both classes of turbulence. We have performed a conceptually simple experiment of laser beam propagation through two types of artificial turbulence: isotropic turbulence generated by a turbulator [Proc. SPIE 8535, 853508 (2012)], and convective turbulence by controlling the temperature of electric heaters. In both cases, a thin laser beam propagates across the turbulent path, and its wandering is registered by a position sensor detector. The strength of the optical turbulence, in terms of the structure constant, is obtained from the wandering variance. It is expressed as a function of the temperature difference between cold and hot sources in each setup. We compare the time series behaviour for each turbulence with increasing turbulence strength by estimating the Hurst exponent, H, through detrended fluctuation analysis (DFA). Refractive index fluctuations are inherently fractal; this characteristic is reflected in their spectra power-law dependence --- in the inertial range. This fractal behaviour is inherited by time series of optical quantities, such as the wandering, by the occurrence of long-range correlations. By analyzing the wandering time series with this technique, we are able to correlate the turbulence strength to the value of the Hurt exponent. Ultimately, we characterize both types of turbulence.Fil: Funes, Gustavo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); ArgentinaFil: Figueroa, Eduardo. Pontificia Universidad Catolica de Valparaiso; ChileFil: Gulich, Maximiliano Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); ArgentinaFil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; ArgentinaFil: Pérez, Darío. Pontificia Universidad Catolica de Valparaiso; ChileSpie2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7433Funes, Gustavo Luis; Figueroa, Eduardo; Gulich, Maximiliano Damián; Zunino, Luciano José; Pérez, Darío; Characterizing inertial and convective optical turbulence by detrended fluctuation analysis; Spie; Spie; 8890; 10-2013; 1-70277-786Xenginfo:eu-repo/semantics/altIdentifier/url/http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1758714info:eu-repo/semantics/altIdentifier/doi/10.1117/12.2028698info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:08Zoai:ri.conicet.gov.ar:11336/7433instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:08.698CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Characterizing inertial and convective optical turbulence by detrended fluctuation analysis |
title |
Characterizing inertial and convective optical turbulence by detrended fluctuation analysis |
spellingShingle |
Characterizing inertial and convective optical turbulence by detrended fluctuation analysis Funes, Gustavo Luis Multifractal Detrended Fluctuation Analysis Hurst Exponent Beam Wandering Angle-Of-Arrival Non-Kolmogorov Turbulence |
title_short |
Characterizing inertial and convective optical turbulence by detrended fluctuation analysis |
title_full |
Characterizing inertial and convective optical turbulence by detrended fluctuation analysis |
title_fullStr |
Characterizing inertial and convective optical turbulence by detrended fluctuation analysis |
title_full_unstemmed |
Characterizing inertial and convective optical turbulence by detrended fluctuation analysis |
title_sort |
Characterizing inertial and convective optical turbulence by detrended fluctuation analysis |
dc.creator.none.fl_str_mv |
Funes, Gustavo Luis Figueroa, Eduardo Gulich, Maximiliano Damián Zunino, Luciano José Pérez, Darío |
author |
Funes, Gustavo Luis |
author_facet |
Funes, Gustavo Luis Figueroa, Eduardo Gulich, Maximiliano Damián Zunino, Luciano José Pérez, Darío |
author_role |
author |
author2 |
Figueroa, Eduardo Gulich, Maximiliano Damián Zunino, Luciano José Pérez, Darío |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Multifractal Detrended Fluctuation Analysis Hurst Exponent Beam Wandering Angle-Of-Arrival Non-Kolmogorov Turbulence |
topic |
Multifractal Detrended Fluctuation Analysis Hurst Exponent Beam Wandering Angle-Of-Arrival Non-Kolmogorov Turbulence |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Atmospheric turbulence is usually simulated at the laboratory by generating convective free flows with hot surfaces, or heaters. It is tacitly assumed that propagation experiments in this environment are comparable to those usually found outdoors. Nevertheless, it is unclear under which conditions the analogy between convective and isotropic turbulence is valid; that is, obeying Kolmogorov isotropic models. For instance, near-ground-level turbulence often is driven by shear ratchets deviating from established inertial models. In this case, a value for the structure constant can be obtained but it would be unable to distinguish between both classes of turbulence. We have performed a conceptually simple experiment of laser beam propagation through two types of artificial turbulence: isotropic turbulence generated by a turbulator [Proc. SPIE 8535, 853508 (2012)], and convective turbulence by controlling the temperature of electric heaters. In both cases, a thin laser beam propagates across the turbulent path, and its wandering is registered by a position sensor detector. The strength of the optical turbulence, in terms of the structure constant, is obtained from the wandering variance. It is expressed as a function of the temperature difference between cold and hot sources in each setup. We compare the time series behaviour for each turbulence with increasing turbulence strength by estimating the Hurst exponent, H, through detrended fluctuation analysis (DFA). Refractive index fluctuations are inherently fractal; this characteristic is reflected in their spectra power-law dependence --- in the inertial range. This fractal behaviour is inherited by time series of optical quantities, such as the wandering, by the occurrence of long-range correlations. By analyzing the wandering time series with this technique, we are able to correlate the turbulence strength to the value of the Hurt exponent. Ultimately, we characterize both types of turbulence. Fil: Funes, Gustavo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina Fil: Figueroa, Eduardo. Pontificia Universidad Catolica de Valparaiso; Chile Fil: Gulich, Maximiliano Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina Fil: Pérez, Darío. Pontificia Universidad Catolica de Valparaiso; Chile |
description |
Atmospheric turbulence is usually simulated at the laboratory by generating convective free flows with hot surfaces, or heaters. It is tacitly assumed that propagation experiments in this environment are comparable to those usually found outdoors. Nevertheless, it is unclear under which conditions the analogy between convective and isotropic turbulence is valid; that is, obeying Kolmogorov isotropic models. For instance, near-ground-level turbulence often is driven by shear ratchets deviating from established inertial models. In this case, a value for the structure constant can be obtained but it would be unable to distinguish between both classes of turbulence. We have performed a conceptually simple experiment of laser beam propagation through two types of artificial turbulence: isotropic turbulence generated by a turbulator [Proc. SPIE 8535, 853508 (2012)], and convective turbulence by controlling the temperature of electric heaters. In both cases, a thin laser beam propagates across the turbulent path, and its wandering is registered by a position sensor detector. The strength of the optical turbulence, in terms of the structure constant, is obtained from the wandering variance. It is expressed as a function of the temperature difference between cold and hot sources in each setup. We compare the time series behaviour for each turbulence with increasing turbulence strength by estimating the Hurst exponent, H, through detrended fluctuation analysis (DFA). Refractive index fluctuations are inherently fractal; this characteristic is reflected in their spectra power-law dependence --- in the inertial range. This fractal behaviour is inherited by time series of optical quantities, such as the wandering, by the occurrence of long-range correlations. By analyzing the wandering time series with this technique, we are able to correlate the turbulence strength to the value of the Hurt exponent. Ultimately, we characterize both types of turbulence. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/7433 Funes, Gustavo Luis; Figueroa, Eduardo; Gulich, Maximiliano Damián; Zunino, Luciano José; Pérez, Darío; Characterizing inertial and convective optical turbulence by detrended fluctuation analysis; Spie; Spie; 8890; 10-2013; 1-7 0277-786X |
url |
http://hdl.handle.net/11336/7433 |
identifier_str_mv |
Funes, Gustavo Luis; Figueroa, Eduardo; Gulich, Maximiliano Damián; Zunino, Luciano José; Pérez, Darío; Characterizing inertial and convective optical turbulence by detrended fluctuation analysis; Spie; Spie; 8890; 10-2013; 1-7 0277-786X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1758714 info:eu-repo/semantics/altIdentifier/doi/10.1117/12.2028698 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Spie |
publisher.none.fl_str_mv |
Spie |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269563246346240 |
score |
13.13397 |