Characterizing inertial and convective optical turbulence by detrended fluctuation analysis

Autores
Funes, Gustavo Luis; Figueroa, Eduardo; Gulich, Maximiliano Damián; Zunino, Luciano José; Pérez, Darío
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Atmospheric turbulence is usually simulated at the laboratory by generating convective free flows with hot surfaces, or heaters. It is tacitly assumed that propagation experiments in this environment are comparable to those usually found outdoors. Nevertheless, it is unclear under which conditions the analogy between convective and isotropic turbulence is valid; that is, obeying Kolmogorov isotropic models. For instance, near-ground-level turbulence often is driven by shear ratchets deviating from established inertial models. In this case, a value for the structure constant can be obtained but it would be unable to distinguish between both classes of turbulence. We have performed a conceptually simple experiment of laser beam propagation through two types of artificial turbulence: isotropic turbulence generated by a turbulator [Proc. SPIE 8535, 853508 (2012)], and convective turbulence by controlling the temperature of electric heaters. In both cases, a thin laser beam propagates across the turbulent path, and its wandering is registered by a position sensor detector. The strength of the optical turbulence, in terms of the structure constant, is obtained from the wandering variance. It is expressed as a function of the temperature difference between cold and hot sources in each setup. We compare the time series behaviour for each turbulence with increasing turbulence strength by estimating the Hurst exponent, H, through detrended fluctuation analysis (DFA). Refractive index fluctuations are inherently fractal; this characteristic is reflected in their spectra power-law dependence --- in the inertial range. This fractal behaviour is inherited by time series of optical quantities, such as the wandering, by the occurrence of long-range correlations. By analyzing the wandering time series with this technique, we are able to correlate the turbulence strength to the value of the Hurt exponent. Ultimately, we characterize both types of turbulence.
Fil: Funes, Gustavo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina
Fil: Figueroa, Eduardo. Pontificia Universidad Catolica de Valparaiso; Chile
Fil: Gulich, Maximiliano Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Pérez, Darío. Pontificia Universidad Catolica de Valparaiso; Chile
Materia
Multifractal Detrended Fluctuation Analysis
Hurst Exponent
Beam Wandering
Angle-Of-Arrival
Non-Kolmogorov Turbulence
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/7433

id CONICETDig_0954d482a61599bdcf1863fc985f0d6f
oai_identifier_str oai:ri.conicet.gov.ar:11336/7433
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Characterizing inertial and convective optical turbulence by detrended fluctuation analysisFunes, Gustavo LuisFigueroa, EduardoGulich, Maximiliano DamiánZunino, Luciano JoséPérez, DaríoMultifractal Detrended Fluctuation AnalysisHurst ExponentBeam WanderingAngle-Of-ArrivalNon-Kolmogorov Turbulencehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Atmospheric turbulence is usually simulated at the laboratory by generating convective free flows with hot surfaces, or heaters. It is tacitly assumed that propagation experiments in this environment are comparable to those usually found outdoors. Nevertheless, it is unclear under which conditions the analogy between convective and isotropic turbulence is valid; that is, obeying Kolmogorov isotropic models. For instance, near-ground-level turbulence often is driven by shear ratchets deviating from established inertial models. In this case, a value for the structure constant can be obtained but it would be unable to distinguish between both classes of turbulence. We have performed a conceptually simple experiment of laser beam propagation through two types of artificial turbulence: isotropic turbulence generated by a turbulator [Proc. SPIE 8535, 853508 (2012)], and convective turbulence by controlling the temperature of electric heaters. In both cases, a thin laser beam propagates across the turbulent path, and its wandering is registered by a position sensor detector. The strength of the optical turbulence, in terms of the structure constant, is obtained from the wandering variance. It is expressed as a function of the temperature difference between cold and hot sources in each setup. We compare the time series behaviour for each turbulence with increasing turbulence strength by estimating the Hurst exponent, H, through detrended fluctuation analysis (DFA). Refractive index fluctuations are inherently fractal; this characteristic is reflected in their spectra power-law dependence --- in the inertial range. This fractal behaviour is inherited by time series of optical quantities, such as the wandering, by the occurrence of long-range correlations. By analyzing the wandering time series with this technique, we are able to correlate the turbulence strength to the value of the Hurt exponent. Ultimately, we characterize both types of turbulence.Fil: Funes, Gustavo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); ArgentinaFil: Figueroa, Eduardo. Pontificia Universidad Catolica de Valparaiso; ChileFil: Gulich, Maximiliano Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); ArgentinaFil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; ArgentinaFil: Pérez, Darío. Pontificia Universidad Catolica de Valparaiso; ChileSpie2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7433Funes, Gustavo Luis; Figueroa, Eduardo; Gulich, Maximiliano Damián; Zunino, Luciano José; Pérez, Darío; Characterizing inertial and convective optical turbulence by detrended fluctuation analysis; Spie; Spie; 8890; 10-2013; 1-70277-786Xenginfo:eu-repo/semantics/altIdentifier/url/http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1758714info:eu-repo/semantics/altIdentifier/doi/10.1117/12.2028698info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:08Zoai:ri.conicet.gov.ar:11336/7433instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:08.698CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Characterizing inertial and convective optical turbulence by detrended fluctuation analysis
title Characterizing inertial and convective optical turbulence by detrended fluctuation analysis
spellingShingle Characterizing inertial and convective optical turbulence by detrended fluctuation analysis
Funes, Gustavo Luis
Multifractal Detrended Fluctuation Analysis
Hurst Exponent
Beam Wandering
Angle-Of-Arrival
Non-Kolmogorov Turbulence
title_short Characterizing inertial and convective optical turbulence by detrended fluctuation analysis
title_full Characterizing inertial and convective optical turbulence by detrended fluctuation analysis
title_fullStr Characterizing inertial and convective optical turbulence by detrended fluctuation analysis
title_full_unstemmed Characterizing inertial and convective optical turbulence by detrended fluctuation analysis
title_sort Characterizing inertial and convective optical turbulence by detrended fluctuation analysis
dc.creator.none.fl_str_mv Funes, Gustavo Luis
Figueroa, Eduardo
Gulich, Maximiliano Damián
Zunino, Luciano José
Pérez, Darío
author Funes, Gustavo Luis
author_facet Funes, Gustavo Luis
Figueroa, Eduardo
Gulich, Maximiliano Damián
Zunino, Luciano José
Pérez, Darío
author_role author
author2 Figueroa, Eduardo
Gulich, Maximiliano Damián
Zunino, Luciano José
Pérez, Darío
author2_role author
author
author
author
dc.subject.none.fl_str_mv Multifractal Detrended Fluctuation Analysis
Hurst Exponent
Beam Wandering
Angle-Of-Arrival
Non-Kolmogorov Turbulence
topic Multifractal Detrended Fluctuation Analysis
Hurst Exponent
Beam Wandering
Angle-Of-Arrival
Non-Kolmogorov Turbulence
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Atmospheric turbulence is usually simulated at the laboratory by generating convective free flows with hot surfaces, or heaters. It is tacitly assumed that propagation experiments in this environment are comparable to those usually found outdoors. Nevertheless, it is unclear under which conditions the analogy between convective and isotropic turbulence is valid; that is, obeying Kolmogorov isotropic models. For instance, near-ground-level turbulence often is driven by shear ratchets deviating from established inertial models. In this case, a value for the structure constant can be obtained but it would be unable to distinguish between both classes of turbulence. We have performed a conceptually simple experiment of laser beam propagation through two types of artificial turbulence: isotropic turbulence generated by a turbulator [Proc. SPIE 8535, 853508 (2012)], and convective turbulence by controlling the temperature of electric heaters. In both cases, a thin laser beam propagates across the turbulent path, and its wandering is registered by a position sensor detector. The strength of the optical turbulence, in terms of the structure constant, is obtained from the wandering variance. It is expressed as a function of the temperature difference between cold and hot sources in each setup. We compare the time series behaviour for each turbulence with increasing turbulence strength by estimating the Hurst exponent, H, through detrended fluctuation analysis (DFA). Refractive index fluctuations are inherently fractal; this characteristic is reflected in their spectra power-law dependence --- in the inertial range. This fractal behaviour is inherited by time series of optical quantities, such as the wandering, by the occurrence of long-range correlations. By analyzing the wandering time series with this technique, we are able to correlate the turbulence strength to the value of the Hurt exponent. Ultimately, we characterize both types of turbulence.
Fil: Funes, Gustavo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina
Fil: Figueroa, Eduardo. Pontificia Universidad Catolica de Valparaiso; Chile
Fil: Gulich, Maximiliano Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Pérez, Darío. Pontificia Universidad Catolica de Valparaiso; Chile
description Atmospheric turbulence is usually simulated at the laboratory by generating convective free flows with hot surfaces, or heaters. It is tacitly assumed that propagation experiments in this environment are comparable to those usually found outdoors. Nevertheless, it is unclear under which conditions the analogy between convective and isotropic turbulence is valid; that is, obeying Kolmogorov isotropic models. For instance, near-ground-level turbulence often is driven by shear ratchets deviating from established inertial models. In this case, a value for the structure constant can be obtained but it would be unable to distinguish between both classes of turbulence. We have performed a conceptually simple experiment of laser beam propagation through two types of artificial turbulence: isotropic turbulence generated by a turbulator [Proc. SPIE 8535, 853508 (2012)], and convective turbulence by controlling the temperature of electric heaters. In both cases, a thin laser beam propagates across the turbulent path, and its wandering is registered by a position sensor detector. The strength of the optical turbulence, in terms of the structure constant, is obtained from the wandering variance. It is expressed as a function of the temperature difference between cold and hot sources in each setup. We compare the time series behaviour for each turbulence with increasing turbulence strength by estimating the Hurst exponent, H, through detrended fluctuation analysis (DFA). Refractive index fluctuations are inherently fractal; this characteristic is reflected in their spectra power-law dependence --- in the inertial range. This fractal behaviour is inherited by time series of optical quantities, such as the wandering, by the occurrence of long-range correlations. By analyzing the wandering time series with this technique, we are able to correlate the turbulence strength to the value of the Hurt exponent. Ultimately, we characterize both types of turbulence.
publishDate 2013
dc.date.none.fl_str_mv 2013-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/7433
Funes, Gustavo Luis; Figueroa, Eduardo; Gulich, Maximiliano Damián; Zunino, Luciano José; Pérez, Darío; Characterizing inertial and convective optical turbulence by detrended fluctuation analysis; Spie; Spie; 8890; 10-2013; 1-7
0277-786X
url http://hdl.handle.net/11336/7433
identifier_str_mv Funes, Gustavo Luis; Figueroa, Eduardo; Gulich, Maximiliano Damián; Zunino, Luciano José; Pérez, Darío; Characterizing inertial and convective optical turbulence by detrended fluctuation analysis; Spie; Spie; 8890; 10-2013; 1-7
0277-786X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1758714
info:eu-repo/semantics/altIdentifier/doi/10.1117/12.2028698
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Spie
publisher.none.fl_str_mv Spie
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269563246346240
score 13.13397