Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method
- Autores
- Pringles, Rolando Marcelo; Olsina, Fernando Gabriel; Penizzotto Bacha, Franco Victor
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Risk management is crucial when committing investments in electricity markets. Investment projects for the generation of electricity are capital-intensive, in large part irreversible and future performance is subject to high uncertainty. Fortunately, most power generation projects have strategic flexibility for handling uncertainty and for mitigating risks under unfavorable scenarios. Modern corporate finance recognizes Real Option analysis (ROA) as the correct way to value investment projects with these characteristics. Due to both, environmental concerns and escalation of fuel prices, electricity generation from renewable sources has grown dramatically worldwide over the last decade. Renewable investment projects share many of the features mentioned. As such, option valuation methods should be applied to estimate the monetary value of flexibility in renewable energy investments. This work presents an appropriate methodology for assessing the economic value of a photovoltaic power plant under uncertainties. ROA is applied to determine the value of delaying the investment decision while waiting for better market information that would reduce acquisition costs due to progress in solar technology. The flexibility of relocating the solar facility in the future upon the appearance of a more attractive site in terms of cost, network accessibility or regulatory policies is also valued. The problem of option valuation is solved through stochastic simulation combined with recursive approximate dynamic programming techniques. The methodology developed might be used by investors for more efficient decision-making and by regulatory agencies for designing adequate support policies that encourage investment in renewable energy generation.
Fil: Pringles, Rolando Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Olsina, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Penizzotto Bacha, Franco Victor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina - Materia
-
Flexibility
Uncertainty
Irreversibility
Real options
Solar energy
Monte Carlo - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143628
Ver los metadatos del registro completo
id |
CONICETDig_0905f4e995f34bdac5662fbb3433a43d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143628 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based methodPringles, Rolando MarceloOlsina, Fernando GabrielPenizzotto Bacha, Franco VictorFlexibilityUncertaintyIrreversibilityReal optionsSolar energyMonte Carlohttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Risk management is crucial when committing investments in electricity markets. Investment projects for the generation of electricity are capital-intensive, in large part irreversible and future performance is subject to high uncertainty. Fortunately, most power generation projects have strategic flexibility for handling uncertainty and for mitigating risks under unfavorable scenarios. Modern corporate finance recognizes Real Option analysis (ROA) as the correct way to value investment projects with these characteristics. Due to both, environmental concerns and escalation of fuel prices, electricity generation from renewable sources has grown dramatically worldwide over the last decade. Renewable investment projects share many of the features mentioned. As such, option valuation methods should be applied to estimate the monetary value of flexibility in renewable energy investments. This work presents an appropriate methodology for assessing the economic value of a photovoltaic power plant under uncertainties. ROA is applied to determine the value of delaying the investment decision while waiting for better market information that would reduce acquisition costs due to progress in solar technology. The flexibility of relocating the solar facility in the future upon the appearance of a more attractive site in terms of cost, network accessibility or regulatory policies is also valued. The problem of option valuation is solved through stochastic simulation combined with recursive approximate dynamic programming techniques. The methodology developed might be used by investors for more efficient decision-making and by regulatory agencies for designing adequate support policies that encourage investment in renewable energy generation.Fil: Pringles, Rolando Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Olsina, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Penizzotto Bacha, Franco Victor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaPergamon-Elsevier Science Ltd2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143628Pringles, Rolando Marcelo; Olsina, Fernando Gabriel; Penizzotto Bacha, Franco Victor; Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method; Pergamon-Elsevier Science Ltd; Renewable Energy; 151; 5-2020; 846-8640960-1481CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0960148119317756info:eu-repo/semantics/altIdentifier/doi/10.1016/j.renene.2019.11.082info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:18Zoai:ri.conicet.gov.ar:11336/143628instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:18.482CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method |
title |
Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method |
spellingShingle |
Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method Pringles, Rolando Marcelo Flexibility Uncertainty Irreversibility Real options Solar energy Monte Carlo |
title_short |
Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method |
title_full |
Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method |
title_fullStr |
Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method |
title_full_unstemmed |
Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method |
title_sort |
Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method |
dc.creator.none.fl_str_mv |
Pringles, Rolando Marcelo Olsina, Fernando Gabriel Penizzotto Bacha, Franco Victor |
author |
Pringles, Rolando Marcelo |
author_facet |
Pringles, Rolando Marcelo Olsina, Fernando Gabriel Penizzotto Bacha, Franco Victor |
author_role |
author |
author2 |
Olsina, Fernando Gabriel Penizzotto Bacha, Franco Victor |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Flexibility Uncertainty Irreversibility Real options Solar energy Monte Carlo |
topic |
Flexibility Uncertainty Irreversibility Real options Solar energy Monte Carlo |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Risk management is crucial when committing investments in electricity markets. Investment projects for the generation of electricity are capital-intensive, in large part irreversible and future performance is subject to high uncertainty. Fortunately, most power generation projects have strategic flexibility for handling uncertainty and for mitigating risks under unfavorable scenarios. Modern corporate finance recognizes Real Option analysis (ROA) as the correct way to value investment projects with these characteristics. Due to both, environmental concerns and escalation of fuel prices, electricity generation from renewable sources has grown dramatically worldwide over the last decade. Renewable investment projects share many of the features mentioned. As such, option valuation methods should be applied to estimate the monetary value of flexibility in renewable energy investments. This work presents an appropriate methodology for assessing the economic value of a photovoltaic power plant under uncertainties. ROA is applied to determine the value of delaying the investment decision while waiting for better market information that would reduce acquisition costs due to progress in solar technology. The flexibility of relocating the solar facility in the future upon the appearance of a more attractive site in terms of cost, network accessibility or regulatory policies is also valued. The problem of option valuation is solved through stochastic simulation combined with recursive approximate dynamic programming techniques. The methodology developed might be used by investors for more efficient decision-making and by regulatory agencies for designing adequate support policies that encourage investment in renewable energy generation. Fil: Pringles, Rolando Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina Fil: Olsina, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina Fil: Penizzotto Bacha, Franco Victor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina |
description |
Risk management is crucial when committing investments in electricity markets. Investment projects for the generation of electricity are capital-intensive, in large part irreversible and future performance is subject to high uncertainty. Fortunately, most power generation projects have strategic flexibility for handling uncertainty and for mitigating risks under unfavorable scenarios. Modern corporate finance recognizes Real Option analysis (ROA) as the correct way to value investment projects with these characteristics. Due to both, environmental concerns and escalation of fuel prices, electricity generation from renewable sources has grown dramatically worldwide over the last decade. Renewable investment projects share many of the features mentioned. As such, option valuation methods should be applied to estimate the monetary value of flexibility in renewable energy investments. This work presents an appropriate methodology for assessing the economic value of a photovoltaic power plant under uncertainties. ROA is applied to determine the value of delaying the investment decision while waiting for better market information that would reduce acquisition costs due to progress in solar technology. The flexibility of relocating the solar facility in the future upon the appearance of a more attractive site in terms of cost, network accessibility or regulatory policies is also valued. The problem of option valuation is solved through stochastic simulation combined with recursive approximate dynamic programming techniques. The methodology developed might be used by investors for more efficient decision-making and by regulatory agencies for designing adequate support policies that encourage investment in renewable energy generation. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143628 Pringles, Rolando Marcelo; Olsina, Fernando Gabriel; Penizzotto Bacha, Franco Victor; Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method; Pergamon-Elsevier Science Ltd; Renewable Energy; 151; 5-2020; 846-864 0960-1481 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143628 |
identifier_str_mv |
Pringles, Rolando Marcelo; Olsina, Fernando Gabriel; Penizzotto Bacha, Franco Victor; Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method; Pergamon-Elsevier Science Ltd; Renewable Energy; 151; 5-2020; 846-864 0960-1481 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0960148119317756 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.renene.2019.11.082 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269997961838592 |
score |
13.13397 |