Earnings trajectories during a crisis in a segmented labor market: Argentina (2019–2023)
- Autores
- Salvia, Hector Agustin; Poy Piñeiro, Santiago
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This study aims to dynamically analyze changes in labor income in Argentina before, during,and after the COVID-19 pandemic, in order to characterize the economic trajectories ofworkers and assess their relationship with occupational inequality during such period. Byemploying panel data from a national urban survey, we implemented a novel methodologicalstrategy that combines latent growth curve (LGC) models to define income trajectories andmultinomial logistic regression analysis so as to evaluate the determinants of these trajectories. After extensive analysis, the results confirm the existence of divergent trajectories. Onthe one hand, downward trajectories primarily affect socially disadvantaged workers in theinformal sector. On the other hand, stable or upward trajectories are observed mainly amongindividuals employed in formal economic units, particularly those with medium or high levelsof education. These findings support the literature that highlights the regressive impact oflabor market segmentation and social inequalities on income and employment opportunitiesfor certain groups of workers in economies characterized by structural heterogeneities atboth the productive and occupational levels.
Fil: Salvia, Hector Agustin. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Secretaría Académica. Dirección de Investigaciones. Programa del Observatorio de la Deuda Social Argentina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Poy Piñeiro, Santiago. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Secretaría Académica. Dirección de Investigaciones. Programa del Observatorio de la Deuda Social Argentina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Labor market segmentation
Earnings trajectories
Informal employment
COVID-19 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/264348
Ver los metadatos del registro completo
id |
CONICETDig_08f894cecb212f13c4125f4ab04c1960 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/264348 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Earnings trajectories during a crisis in a segmented labor market: Argentina (2019–2023)Salvia, Hector AgustinPoy Piñeiro, SantiagoLabor market segmentationEarnings trajectoriesInformal employmentCOVID-19https://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5This study aims to dynamically analyze changes in labor income in Argentina before, during,and after the COVID-19 pandemic, in order to characterize the economic trajectories ofworkers and assess their relationship with occupational inequality during such period. Byemploying panel data from a national urban survey, we implemented a novel methodologicalstrategy that combines latent growth curve (LGC) models to define income trajectories andmultinomial logistic regression analysis so as to evaluate the determinants of these trajectories. After extensive analysis, the results confirm the existence of divergent trajectories. Onthe one hand, downward trajectories primarily affect socially disadvantaged workers in theinformal sector. On the other hand, stable or upward trajectories are observed mainly amongindividuals employed in formal economic units, particularly those with medium or high levelsof education. These findings support the literature that highlights the regressive impact oflabor market segmentation and social inequalities on income and employment opportunitiesfor certain groups of workers in economies characterized by structural heterogeneities atboth the productive and occupational levels.Fil: Salvia, Hector Agustin. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Secretaría Académica. Dirección de Investigaciones. Programa del Observatorio de la Deuda Social Argentina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Poy Piñeiro, Santiago. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Secretaría Académica. Dirección de Investigaciones. Programa del Observatorio de la Deuda Social Argentina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaNature2025-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264348Salvia, Hector Agustin; Poy Piñeiro, Santiago; Earnings trajectories during a crisis in a segmented labor market: Argentina (2019–2023); Nature; Humanities and Social Sciences Communications; 12; 1; 5-2025; 1-122662-9992CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41599-025-04968-9info:eu-repo/semantics/altIdentifier/doi/10.1057/s41599-025-04968-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:49Zoai:ri.conicet.gov.ar:11336/264348instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:50.255CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Earnings trajectories during a crisis in a segmented labor market: Argentina (2019–2023) |
title |
Earnings trajectories during a crisis in a segmented labor market: Argentina (2019–2023) |
spellingShingle |
Earnings trajectories during a crisis in a segmented labor market: Argentina (2019–2023) Salvia, Hector Agustin Labor market segmentation Earnings trajectories Informal employment COVID-19 |
title_short |
Earnings trajectories during a crisis in a segmented labor market: Argentina (2019–2023) |
title_full |
Earnings trajectories during a crisis in a segmented labor market: Argentina (2019–2023) |
title_fullStr |
Earnings trajectories during a crisis in a segmented labor market: Argentina (2019–2023) |
title_full_unstemmed |
Earnings trajectories during a crisis in a segmented labor market: Argentina (2019–2023) |
title_sort |
Earnings trajectories during a crisis in a segmented labor market: Argentina (2019–2023) |
dc.creator.none.fl_str_mv |
Salvia, Hector Agustin Poy Piñeiro, Santiago |
author |
Salvia, Hector Agustin |
author_facet |
Salvia, Hector Agustin Poy Piñeiro, Santiago |
author_role |
author |
author2 |
Poy Piñeiro, Santiago |
author2_role |
author |
dc.subject.none.fl_str_mv |
Labor market segmentation Earnings trajectories Informal employment COVID-19 |
topic |
Labor market segmentation Earnings trajectories Informal employment COVID-19 |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.2 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
This study aims to dynamically analyze changes in labor income in Argentina before, during,and after the COVID-19 pandemic, in order to characterize the economic trajectories ofworkers and assess their relationship with occupational inequality during such period. Byemploying panel data from a national urban survey, we implemented a novel methodologicalstrategy that combines latent growth curve (LGC) models to define income trajectories andmultinomial logistic regression analysis so as to evaluate the determinants of these trajectories. After extensive analysis, the results confirm the existence of divergent trajectories. Onthe one hand, downward trajectories primarily affect socially disadvantaged workers in theinformal sector. On the other hand, stable or upward trajectories are observed mainly amongindividuals employed in formal economic units, particularly those with medium or high levelsof education. These findings support the literature that highlights the regressive impact oflabor market segmentation and social inequalities on income and employment opportunitiesfor certain groups of workers in economies characterized by structural heterogeneities atboth the productive and occupational levels. Fil: Salvia, Hector Agustin. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Secretaría Académica. Dirección de Investigaciones. Programa del Observatorio de la Deuda Social Argentina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Poy Piñeiro, Santiago. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Secretaría Académica. Dirección de Investigaciones. Programa del Observatorio de la Deuda Social Argentina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
This study aims to dynamically analyze changes in labor income in Argentina before, during,and after the COVID-19 pandemic, in order to characterize the economic trajectories ofworkers and assess their relationship with occupational inequality during such period. Byemploying panel data from a national urban survey, we implemented a novel methodologicalstrategy that combines latent growth curve (LGC) models to define income trajectories andmultinomial logistic regression analysis so as to evaluate the determinants of these trajectories. After extensive analysis, the results confirm the existence of divergent trajectories. Onthe one hand, downward trajectories primarily affect socially disadvantaged workers in theinformal sector. On the other hand, stable or upward trajectories are observed mainly amongindividuals employed in formal economic units, particularly those with medium or high levelsof education. These findings support the literature that highlights the regressive impact oflabor market segmentation and social inequalities on income and employment opportunitiesfor certain groups of workers in economies characterized by structural heterogeneities atboth the productive and occupational levels. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/264348 Salvia, Hector Agustin; Poy Piñeiro, Santiago; Earnings trajectories during a crisis in a segmented labor market: Argentina (2019–2023); Nature; Humanities and Social Sciences Communications; 12; 1; 5-2025; 1-12 2662-9992 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/264348 |
identifier_str_mv |
Salvia, Hector Agustin; Poy Piñeiro, Santiago; Earnings trajectories during a crisis in a segmented labor market: Argentina (2019–2023); Nature; Humanities and Social Sciences Communications; 12; 1; 5-2025; 1-12 2662-9992 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41599-025-04968-9 info:eu-repo/semantics/altIdentifier/doi/10.1057/s41599-025-04968-9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature |
publisher.none.fl_str_mv |
Nature |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614510598422528 |
score |
13.070432 |