The asymptotic distribution of the permutation entropy
- Autores
- Rey, Andrea Alejandra; Frery, A. C.; Gambini, J.; Lucini, María Magdalena
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Ordinal patterns serve as a robust symbolic transformation technique, enabling the unveiling of latent dynamics within time series data. This methodology involves constructing histograms of patterns, followed by the calculation of both entropy and statistical complexity—an avenue yet to be fully understood in terms of its statistical properties. While asymptotic results can be derived by assuming a multinomial distribution for histogram proportions, the challenge emerges from the non-independence present in the sequence of ordinal patterns. Consequently, the direct application of the multinomial assumption is questionable. This study focuses on the computation of the asymptotic distribution of permutation entropy, considering the inherent patterns’ correlation structure. Furthermore, the research delves into a comparative analysis, pitting this distribution against the entropy derived from a multinomial law. We present simulation algorithms for sampling time series with prescribed histograms of patterns and transition probabilities between them. Through this analysis, we better understand the intricacies of ordinal patterns and their statistical attributes.
Fil: Rey, Andrea Alejandra. Secretaria de Investigacion ; Universidad Nacional de Hurlingham; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Frery, A. C.. Victoria University Of Wellington; Nueva Zelanda
Fil: Gambini, J.. Universidad Nacional de Hurlingham.; Argentina
Fil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina - Materia
-
ENTROPY
PROBABILITY THEORY
COVARIANCE AND CORRELATION
STATISTICAL ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/224578
Ver los metadatos del registro completo
id |
CONICETDig_08ce57830b293c934cce61363386dc1e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/224578 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The asymptotic distribution of the permutation entropyRey, Andrea AlejandraFrery, A. C.Gambini, J.Lucini, María MagdalenaENTROPYPROBABILITY THEORYCOVARIANCE AND CORRELATIONSTATISTICAL ANALYSIShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Ordinal patterns serve as a robust symbolic transformation technique, enabling the unveiling of latent dynamics within time series data. This methodology involves constructing histograms of patterns, followed by the calculation of both entropy and statistical complexity—an avenue yet to be fully understood in terms of its statistical properties. While asymptotic results can be derived by assuming a multinomial distribution for histogram proportions, the challenge emerges from the non-independence present in the sequence of ordinal patterns. Consequently, the direct application of the multinomial assumption is questionable. This study focuses on the computation of the asymptotic distribution of permutation entropy, considering the inherent patterns’ correlation structure. Furthermore, the research delves into a comparative analysis, pitting this distribution against the entropy derived from a multinomial law. We present simulation algorithms for sampling time series with prescribed histograms of patterns and transition probabilities between them. Through this analysis, we better understand the intricacies of ordinal patterns and their statistical attributes.Fil: Rey, Andrea Alejandra. Secretaria de Investigacion ; Universidad Nacional de Hurlingham; . Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Frery, A. C.. Victoria University Of Wellington; Nueva ZelandaFil: Gambini, J.. Universidad Nacional de Hurlingham.; ArgentinaFil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; ArgentinaAmerican Institute of Physics2023-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224578Rey, Andrea Alejandra; Frery, A. C.; Gambini, J.; Lucini, María Magdalena; The asymptotic distribution of the permutation entropy; American Institute of Physics; Chaos; 33; 11; 11-2023; 1-251054-1500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/cha/article/33/11/113108/2919291/The-asymptotic-distribution-of-the-permutationinfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0171508info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:35Zoai:ri.conicet.gov.ar:11336/224578instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:35.915CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The asymptotic distribution of the permutation entropy |
title |
The asymptotic distribution of the permutation entropy |
spellingShingle |
The asymptotic distribution of the permutation entropy Rey, Andrea Alejandra ENTROPY PROBABILITY THEORY COVARIANCE AND CORRELATION STATISTICAL ANALYSIS |
title_short |
The asymptotic distribution of the permutation entropy |
title_full |
The asymptotic distribution of the permutation entropy |
title_fullStr |
The asymptotic distribution of the permutation entropy |
title_full_unstemmed |
The asymptotic distribution of the permutation entropy |
title_sort |
The asymptotic distribution of the permutation entropy |
dc.creator.none.fl_str_mv |
Rey, Andrea Alejandra Frery, A. C. Gambini, J. Lucini, María Magdalena |
author |
Rey, Andrea Alejandra |
author_facet |
Rey, Andrea Alejandra Frery, A. C. Gambini, J. Lucini, María Magdalena |
author_role |
author |
author2 |
Frery, A. C. Gambini, J. Lucini, María Magdalena |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ENTROPY PROBABILITY THEORY COVARIANCE AND CORRELATION STATISTICAL ANALYSIS |
topic |
ENTROPY PROBABILITY THEORY COVARIANCE AND CORRELATION STATISTICAL ANALYSIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Ordinal patterns serve as a robust symbolic transformation technique, enabling the unveiling of latent dynamics within time series data. This methodology involves constructing histograms of patterns, followed by the calculation of both entropy and statistical complexity—an avenue yet to be fully understood in terms of its statistical properties. While asymptotic results can be derived by assuming a multinomial distribution for histogram proportions, the challenge emerges from the non-independence present in the sequence of ordinal patterns. Consequently, the direct application of the multinomial assumption is questionable. This study focuses on the computation of the asymptotic distribution of permutation entropy, considering the inherent patterns’ correlation structure. Furthermore, the research delves into a comparative analysis, pitting this distribution against the entropy derived from a multinomial law. We present simulation algorithms for sampling time series with prescribed histograms of patterns and transition probabilities between them. Through this analysis, we better understand the intricacies of ordinal patterns and their statistical attributes. Fil: Rey, Andrea Alejandra. Secretaria de Investigacion ; Universidad Nacional de Hurlingham; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Frery, A. C.. Victoria University Of Wellington; Nueva Zelanda Fil: Gambini, J.. Universidad Nacional de Hurlingham.; Argentina Fil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina |
description |
Ordinal patterns serve as a robust symbolic transformation technique, enabling the unveiling of latent dynamics within time series data. This methodology involves constructing histograms of patterns, followed by the calculation of both entropy and statistical complexity—an avenue yet to be fully understood in terms of its statistical properties. While asymptotic results can be derived by assuming a multinomial distribution for histogram proportions, the challenge emerges from the non-independence present in the sequence of ordinal patterns. Consequently, the direct application of the multinomial assumption is questionable. This study focuses on the computation of the asymptotic distribution of permutation entropy, considering the inherent patterns’ correlation structure. Furthermore, the research delves into a comparative analysis, pitting this distribution against the entropy derived from a multinomial law. We present simulation algorithms for sampling time series with prescribed histograms of patterns and transition probabilities between them. Through this analysis, we better understand the intricacies of ordinal patterns and their statistical attributes. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/224578 Rey, Andrea Alejandra; Frery, A. C.; Gambini, J.; Lucini, María Magdalena; The asymptotic distribution of the permutation entropy; American Institute of Physics; Chaos; 33; 11; 11-2023; 1-25 1054-1500 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/224578 |
identifier_str_mv |
Rey, Andrea Alejandra; Frery, A. C.; Gambini, J.; Lucini, María Magdalena; The asymptotic distribution of the permutation entropy; American Institute of Physics; Chaos; 33; 11; 11-2023; 1-25 1054-1500 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/cha/article/33/11/113108/2919291/The-asymptotic-distribution-of-the-permutation info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0171508 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613185333624832 |
score |
13.070432 |