Predation risk and floral rewards: How pollinators balance these conflicts and the consequences on plant fitness
- Autores
- Gavini, Sabrina; Quintero, Carolina
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Foraging behavior of pollinators is shaped by, among other factors, the conflict between maximizing resource intake and minimizing predation risk; yet, empirical studies quantifying variation in both forces are rare, compared to those investigating each separately. Here, we discuss the importance of simultaneously assessing bottom-up and top-down forces in the study of plant-pollinator interactions, and propose a conceptual and testable graphical hypothesis for pollinator foraging behavior and plant fitness outcomes as a function of varying floral rewards and predation risk. In low predation risk scenarios, no noticeable changes in pollinator foraging behavior are expected, with reward levels affecting only the activity threshold. However, as predation risk increases we propose that there is a decrease in foraging behavior, with a steeper decline as plants are more rewarding and profitable. Lastly, in high predation risk scenarios, we expect foraging to approach zero, regardless of floral rewards. Thus, we propose that pollinator foraging behavior follows an inverse S-shape curve, with more pronounced changes in foraging activity at intermediate levels of predation risk, especially in high reward systems. We present empirical evidence that is consistent with this hypothesis. In terms of the consequences for plant fitness, we propose that specialized plant-pollinator systems should be more vulnerable to increased predation risk, with a steeper and faster decline in plant fitness, compared with generalist systems, in which pollinator redundancy can delay or buffer the effect of predators. Moreover, whereas we expect that specialist systems follows a similar inverse S-shape curve, in generalist systems we propose three different scenarios as a function not only of reward level but also compatibility, mating-system, and the interplay between growth form and floral display. The incorporation of trade-offs in pollinator behavior balancing the conflicting demands between feeding and predation risk has a promising future as a key feature enabling the development of more complex foraging models.
Fil: Gavini, Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Quintero, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina - Materia
-
Floral predators
Fear
Pollinator foraging behavior
Plant reproductive success - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/266361
Ver los metadatos del registro completo
id |
CONICETDig_0863f9e7de59801ffc3f683f160e7bb9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/266361 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Predation risk and floral rewards: How pollinators balance these conflicts and the consequences on plant fitnessGavini, SabrinaQuintero, CarolinaFloral predatorsFearPollinator foraging behaviorPlant reproductive successhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Foraging behavior of pollinators is shaped by, among other factors, the conflict between maximizing resource intake and minimizing predation risk; yet, empirical studies quantifying variation in both forces are rare, compared to those investigating each separately. Here, we discuss the importance of simultaneously assessing bottom-up and top-down forces in the study of plant-pollinator interactions, and propose a conceptual and testable graphical hypothesis for pollinator foraging behavior and plant fitness outcomes as a function of varying floral rewards and predation risk. In low predation risk scenarios, no noticeable changes in pollinator foraging behavior are expected, with reward levels affecting only the activity threshold. However, as predation risk increases we propose that there is a decrease in foraging behavior, with a steeper decline as plants are more rewarding and profitable. Lastly, in high predation risk scenarios, we expect foraging to approach zero, regardless of floral rewards. Thus, we propose that pollinator foraging behavior follows an inverse S-shape curve, with more pronounced changes in foraging activity at intermediate levels of predation risk, especially in high reward systems. We present empirical evidence that is consistent with this hypothesis. In terms of the consequences for plant fitness, we propose that specialized plant-pollinator systems should be more vulnerable to increased predation risk, with a steeper and faster decline in plant fitness, compared with generalist systems, in which pollinator redundancy can delay or buffer the effect of predators. Moreover, whereas we expect that specialist systems follows a similar inverse S-shape curve, in generalist systems we propose three different scenarios as a function not only of reward level but also compatibility, mating-system, and the interplay between growth form and floral display. The incorporation of trade-offs in pollinator behavior balancing the conflicting demands between feeding and predation risk has a promising future as a key feature enabling the development of more complex foraging models.Fil: Gavini, Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Quintero, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaElsevier2024-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/266361Gavini, Sabrina; Quintero, Carolina; Predation risk and floral rewards: How pollinators balance these conflicts and the consequences on plant fitness; Elsevier; Current Research in Insect Science; 6; 7-2024; 1-112666-5158CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2666515824000210info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cris.2024.100091info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:01Zoai:ri.conicet.gov.ar:11336/266361instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:01.915CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Predation risk and floral rewards: How pollinators balance these conflicts and the consequences on plant fitness |
title |
Predation risk and floral rewards: How pollinators balance these conflicts and the consequences on plant fitness |
spellingShingle |
Predation risk and floral rewards: How pollinators balance these conflicts and the consequences on plant fitness Gavini, Sabrina Floral predators Fear Pollinator foraging behavior Plant reproductive success |
title_short |
Predation risk and floral rewards: How pollinators balance these conflicts and the consequences on plant fitness |
title_full |
Predation risk and floral rewards: How pollinators balance these conflicts and the consequences on plant fitness |
title_fullStr |
Predation risk and floral rewards: How pollinators balance these conflicts and the consequences on plant fitness |
title_full_unstemmed |
Predation risk and floral rewards: How pollinators balance these conflicts and the consequences on plant fitness |
title_sort |
Predation risk and floral rewards: How pollinators balance these conflicts and the consequences on plant fitness |
dc.creator.none.fl_str_mv |
Gavini, Sabrina Quintero, Carolina |
author |
Gavini, Sabrina |
author_facet |
Gavini, Sabrina Quintero, Carolina |
author_role |
author |
author2 |
Quintero, Carolina |
author2_role |
author |
dc.subject.none.fl_str_mv |
Floral predators Fear Pollinator foraging behavior Plant reproductive success |
topic |
Floral predators Fear Pollinator foraging behavior Plant reproductive success |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Foraging behavior of pollinators is shaped by, among other factors, the conflict between maximizing resource intake and minimizing predation risk; yet, empirical studies quantifying variation in both forces are rare, compared to those investigating each separately. Here, we discuss the importance of simultaneously assessing bottom-up and top-down forces in the study of plant-pollinator interactions, and propose a conceptual and testable graphical hypothesis for pollinator foraging behavior and plant fitness outcomes as a function of varying floral rewards and predation risk. In low predation risk scenarios, no noticeable changes in pollinator foraging behavior are expected, with reward levels affecting only the activity threshold. However, as predation risk increases we propose that there is a decrease in foraging behavior, with a steeper decline as plants are more rewarding and profitable. Lastly, in high predation risk scenarios, we expect foraging to approach zero, regardless of floral rewards. Thus, we propose that pollinator foraging behavior follows an inverse S-shape curve, with more pronounced changes in foraging activity at intermediate levels of predation risk, especially in high reward systems. We present empirical evidence that is consistent with this hypothesis. In terms of the consequences for plant fitness, we propose that specialized plant-pollinator systems should be more vulnerable to increased predation risk, with a steeper and faster decline in plant fitness, compared with generalist systems, in which pollinator redundancy can delay or buffer the effect of predators. Moreover, whereas we expect that specialist systems follows a similar inverse S-shape curve, in generalist systems we propose three different scenarios as a function not only of reward level but also compatibility, mating-system, and the interplay between growth form and floral display. The incorporation of trade-offs in pollinator behavior balancing the conflicting demands between feeding and predation risk has a promising future as a key feature enabling the development of more complex foraging models. Fil: Gavini, Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Quintero, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina |
description |
Foraging behavior of pollinators is shaped by, among other factors, the conflict between maximizing resource intake and minimizing predation risk; yet, empirical studies quantifying variation in both forces are rare, compared to those investigating each separately. Here, we discuss the importance of simultaneously assessing bottom-up and top-down forces in the study of plant-pollinator interactions, and propose a conceptual and testable graphical hypothesis for pollinator foraging behavior and plant fitness outcomes as a function of varying floral rewards and predation risk. In low predation risk scenarios, no noticeable changes in pollinator foraging behavior are expected, with reward levels affecting only the activity threshold. However, as predation risk increases we propose that there is a decrease in foraging behavior, with a steeper decline as plants are more rewarding and profitable. Lastly, in high predation risk scenarios, we expect foraging to approach zero, regardless of floral rewards. Thus, we propose that pollinator foraging behavior follows an inverse S-shape curve, with more pronounced changes in foraging activity at intermediate levels of predation risk, especially in high reward systems. We present empirical evidence that is consistent with this hypothesis. In terms of the consequences for plant fitness, we propose that specialized plant-pollinator systems should be more vulnerable to increased predation risk, with a steeper and faster decline in plant fitness, compared with generalist systems, in which pollinator redundancy can delay or buffer the effect of predators. Moreover, whereas we expect that specialist systems follows a similar inverse S-shape curve, in generalist systems we propose three different scenarios as a function not only of reward level but also compatibility, mating-system, and the interplay between growth form and floral display. The incorporation of trade-offs in pollinator behavior balancing the conflicting demands between feeding and predation risk has a promising future as a key feature enabling the development of more complex foraging models. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/266361 Gavini, Sabrina; Quintero, Carolina; Predation risk and floral rewards: How pollinators balance these conflicts and the consequences on plant fitness; Elsevier; Current Research in Insect Science; 6; 7-2024; 1-11 2666-5158 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/266361 |
identifier_str_mv |
Gavini, Sabrina; Quintero, Carolina; Predation risk and floral rewards: How pollinators balance these conflicts and the consequences on plant fitness; Elsevier; Current Research in Insect Science; 6; 7-2024; 1-11 2666-5158 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2666515824000210 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cris.2024.100091 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269832888713216 |
score |
13.13397 |