On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequencies

Autores
Barlakas, Vasileios; Galligani, Victoria Sol; Geer, Alan J.; Eriksson, Patrick
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
With the new generation of microwave instruments and, especially, the Ice Cloud Imager covering submillimeter frequencies, it is necessary to evaluate the performance of the operational Radiative Transfer model for TOVS (RTTOV). Thus, an intercomparison study has been conducted between RTTOV and the reference model ARTS (Atmospheric Radiative Transfer Simulator), with an emphasis on cloudy and precipitating conditions, covering frequencies between ≈53.6 and ≈664.0 GHz. Overall a rather good agreement is found between the δ-Eddington solution embedded in the scattering solver of RTTOV, RTTOV-SCATT, and the discrete ordinate solution embedded in ARTS. Under clear-sky conditions, given a consistent spectroscopy, the agreement is within 0.4 K over all frequencies considered. When idealized, homogeneous cloudy conditions are employed, the agreement is mostly ±2 K; this range is exceeded only at high scattering conditions. However, the following weaknesses are identified: the δ-Eddington solution fails to produce deep enough brightness temperature depressions at increasingly high scattering conditions and is not sufficient to capture the phase function structures at size parameters above 2–3; conditions typically found at around 664.0 GHz. When realistic hydrometeor profiles are employed, δ-Eddington leads to a root mean squared error of 1 K, with individual errors between 0 and 4 K. Infrequently, and in localized areas, larger discrepancies are identified, exceeding 10 K. However, these inaccuracies stemming from the simplified physics of RTTOV-SCATT were found at least an order of magnitude smaller than the cloud and precipitation representation errors assigned in data assimilation. Thus, we support the use of RTTOV-SCATT at submillimeter frequencies for operational purposes.
Fil: Barlakas, Vasileios. Chalmers University of Technology; Suecia
Fil: Galligani, Victoria Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina
Fil: Geer, Alan J.. European Centre For Medium-range Weather Forecasts; Reino Unido
Fil: Eriksson, Patrick. Chalmers University of Technology; Suecia
Materia
BENCHMARK RESULTS
ICE CLOUD IMAGER
INTERCOMPARISON
MICROWAVE/SUBMILLIMETER
RADIATIVE TRANSFER
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/212490

id CONICETDig_07b03e769b597d4ef218d87d400655ff
oai_identifier_str oai:ri.conicet.gov.ar:11336/212490
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequenciesBarlakas, VasileiosGalligani, Victoria SolGeer, Alan J.Eriksson, PatrickBENCHMARK RESULTSICE CLOUD IMAGERINTERCOMPARISONMICROWAVE/SUBMILLIMETERRADIATIVE TRANSFERhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1With the new generation of microwave instruments and, especially, the Ice Cloud Imager covering submillimeter frequencies, it is necessary to evaluate the performance of the operational Radiative Transfer model for TOVS (RTTOV). Thus, an intercomparison study has been conducted between RTTOV and the reference model ARTS (Atmospheric Radiative Transfer Simulator), with an emphasis on cloudy and precipitating conditions, covering frequencies between ≈53.6 and ≈664.0 GHz. Overall a rather good agreement is found between the δ-Eddington solution embedded in the scattering solver of RTTOV, RTTOV-SCATT, and the discrete ordinate solution embedded in ARTS. Under clear-sky conditions, given a consistent spectroscopy, the agreement is within 0.4 K over all frequencies considered. When idealized, homogeneous cloudy conditions are employed, the agreement is mostly ±2 K; this range is exceeded only at high scattering conditions. However, the following weaknesses are identified: the δ-Eddington solution fails to produce deep enough brightness temperature depressions at increasingly high scattering conditions and is not sufficient to capture the phase function structures at size parameters above 2–3; conditions typically found at around 664.0 GHz. When realistic hydrometeor profiles are employed, δ-Eddington leads to a root mean squared error of 1 K, with individual errors between 0 and 4 K. Infrequently, and in localized areas, larger discrepancies are identified, exceeding 10 K. However, these inaccuracies stemming from the simplified physics of RTTOV-SCATT were found at least an order of magnitude smaller than the cloud and precipitation representation errors assigned in data assimilation. Thus, we support the use of RTTOV-SCATT at submillimeter frequencies for operational purposes.Fil: Barlakas, Vasileios. Chalmers University of Technology; SueciaFil: Galligani, Victoria Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; ArgentinaFil: Geer, Alan J.. European Centre For Medium-range Weather Forecasts; Reino UnidoFil: Eriksson, Patrick. Chalmers University of Technology; SueciaPergamon-Elsevier Science Ltd2022-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212490Barlakas, Vasileios; Galligani, Victoria Sol; Geer, Alan J.; Eriksson, Patrick; On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequencies; Pergamon-Elsevier Science Ltd; Journal of Quantitative Spectroscopy and Radiative Transfer; 283; 6-2022; 1-180022-4073CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022407322000747info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jqsrt.2022.108137info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:59Zoai:ri.conicet.gov.ar:11336/212490instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:59.453CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequencies
title On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequencies
spellingShingle On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequencies
Barlakas, Vasileios
BENCHMARK RESULTS
ICE CLOUD IMAGER
INTERCOMPARISON
MICROWAVE/SUBMILLIMETER
RADIATIVE TRANSFER
title_short On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequencies
title_full On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequencies
title_fullStr On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequencies
title_full_unstemmed On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequencies
title_sort On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequencies
dc.creator.none.fl_str_mv Barlakas, Vasileios
Galligani, Victoria Sol
Geer, Alan J.
Eriksson, Patrick
author Barlakas, Vasileios
author_facet Barlakas, Vasileios
Galligani, Victoria Sol
Geer, Alan J.
Eriksson, Patrick
author_role author
author2 Galligani, Victoria Sol
Geer, Alan J.
Eriksson, Patrick
author2_role author
author
author
dc.subject.none.fl_str_mv BENCHMARK RESULTS
ICE CLOUD IMAGER
INTERCOMPARISON
MICROWAVE/SUBMILLIMETER
RADIATIVE TRANSFER
topic BENCHMARK RESULTS
ICE CLOUD IMAGER
INTERCOMPARISON
MICROWAVE/SUBMILLIMETER
RADIATIVE TRANSFER
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv With the new generation of microwave instruments and, especially, the Ice Cloud Imager covering submillimeter frequencies, it is necessary to evaluate the performance of the operational Radiative Transfer model for TOVS (RTTOV). Thus, an intercomparison study has been conducted between RTTOV and the reference model ARTS (Atmospheric Radiative Transfer Simulator), with an emphasis on cloudy and precipitating conditions, covering frequencies between ≈53.6 and ≈664.0 GHz. Overall a rather good agreement is found between the δ-Eddington solution embedded in the scattering solver of RTTOV, RTTOV-SCATT, and the discrete ordinate solution embedded in ARTS. Under clear-sky conditions, given a consistent spectroscopy, the agreement is within 0.4 K over all frequencies considered. When idealized, homogeneous cloudy conditions are employed, the agreement is mostly ±2 K; this range is exceeded only at high scattering conditions. However, the following weaknesses are identified: the δ-Eddington solution fails to produce deep enough brightness temperature depressions at increasingly high scattering conditions and is not sufficient to capture the phase function structures at size parameters above 2–3; conditions typically found at around 664.0 GHz. When realistic hydrometeor profiles are employed, δ-Eddington leads to a root mean squared error of 1 K, with individual errors between 0 and 4 K. Infrequently, and in localized areas, larger discrepancies are identified, exceeding 10 K. However, these inaccuracies stemming from the simplified physics of RTTOV-SCATT were found at least an order of magnitude smaller than the cloud and precipitation representation errors assigned in data assimilation. Thus, we support the use of RTTOV-SCATT at submillimeter frequencies for operational purposes.
Fil: Barlakas, Vasileios. Chalmers University of Technology; Suecia
Fil: Galligani, Victoria Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina
Fil: Geer, Alan J.. European Centre For Medium-range Weather Forecasts; Reino Unido
Fil: Eriksson, Patrick. Chalmers University of Technology; Suecia
description With the new generation of microwave instruments and, especially, the Ice Cloud Imager covering submillimeter frequencies, it is necessary to evaluate the performance of the operational Radiative Transfer model for TOVS (RTTOV). Thus, an intercomparison study has been conducted between RTTOV and the reference model ARTS (Atmospheric Radiative Transfer Simulator), with an emphasis on cloudy and precipitating conditions, covering frequencies between ≈53.6 and ≈664.0 GHz. Overall a rather good agreement is found between the δ-Eddington solution embedded in the scattering solver of RTTOV, RTTOV-SCATT, and the discrete ordinate solution embedded in ARTS. Under clear-sky conditions, given a consistent spectroscopy, the agreement is within 0.4 K over all frequencies considered. When idealized, homogeneous cloudy conditions are employed, the agreement is mostly ±2 K; this range is exceeded only at high scattering conditions. However, the following weaknesses are identified: the δ-Eddington solution fails to produce deep enough brightness temperature depressions at increasingly high scattering conditions and is not sufficient to capture the phase function structures at size parameters above 2–3; conditions typically found at around 664.0 GHz. When realistic hydrometeor profiles are employed, δ-Eddington leads to a root mean squared error of 1 K, with individual errors between 0 and 4 K. Infrequently, and in localized areas, larger discrepancies are identified, exceeding 10 K. However, these inaccuracies stemming from the simplified physics of RTTOV-SCATT were found at least an order of magnitude smaller than the cloud and precipitation representation errors assigned in data assimilation. Thus, we support the use of RTTOV-SCATT at submillimeter frequencies for operational purposes.
publishDate 2022
dc.date.none.fl_str_mv 2022-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/212490
Barlakas, Vasileios; Galligani, Victoria Sol; Geer, Alan J.; Eriksson, Patrick; On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequencies; Pergamon-Elsevier Science Ltd; Journal of Quantitative Spectroscopy and Radiative Transfer; 283; 6-2022; 1-18
0022-4073
CONICET Digital
CONICET
url http://hdl.handle.net/11336/212490
identifier_str_mv Barlakas, Vasileios; Galligani, Victoria Sol; Geer, Alan J.; Eriksson, Patrick; On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequencies; Pergamon-Elsevier Science Ltd; Journal of Quantitative Spectroscopy and Radiative Transfer; 283; 6-2022; 1-18
0022-4073
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022407322000747
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jqsrt.2022.108137
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614156890669056
score 13.070432