Phase diagram of the asymmetric Hubbard model and an entropic chromatographic method for cooling cold fermions in optical lattices
- Autores
- Winograd, Emilio Andres; Chitra, R.; Rozenberg, Marcelo Javier
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the phase diagram of the asymmetric Hubbard model (AHM), which is characterized by different values of the hopping for the two spin projections of a fermion or, equivalently, two different orbitals. This model is expected to provide a good description of a mass-imbalanced cold fermionic mixture in a 3D optical lattice. We use the dynamical mean-field theory to study various physical properties of this system. In particular, we show how orbital-selective physics, observed in multiorbital strongly correlated electron systems, can be realized in such a simple model. We find that the density distribution is a good probe of this orbital-selective crossover from a Fermi-liquid to a non-Fermi-liquid state. Below an ordering temperature T o, which is a function of both the interaction and hopping asymmetry, the system exhibits staggered long-range orbital order. Apart from the special case of the symmetric limit, i.e., Hubbard model, where there is no hopping asymmetry, this orbital order is accompanied by a true charge density wave order for all values of the hopping asymmetry. We calculate the order parameters and various physical quantities including the thermodynamics in both the ordered and disordered phases. We find that the formation of the charge density wave is signaled by an abrupt increase in the sublattice double occupancies. Finally, we propose a new method, entropic chromatography, for cooling fermionic atoms in optical lattices, by exploiting the properties of the AHM. To establish this cooling strategy on a firmer basis, we also discuss the variations in temperature induced by the adiabatic tuning of interactions and hopping parameters. © 2012 American Physical Society.
Fil: Winograd, Emilio Andres. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Chitra, R.. Universite Pierre et Marie Curie; Francia
Fil: Rozenberg, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
Cold Atoms
Optical Lattices
Strongly Correlated Electron Systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/56131
Ver los metadatos del registro completo
id |
CONICETDig_07a6b2756401bf78135f1917db6ed772 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/56131 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Phase diagram of the asymmetric Hubbard model and an entropic chromatographic method for cooling cold fermions in optical latticesWinograd, Emilio AndresChitra, R.Rozenberg, Marcelo JavierCold AtomsOptical LatticesStrongly Correlated Electron Systemshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the phase diagram of the asymmetric Hubbard model (AHM), which is characterized by different values of the hopping for the two spin projections of a fermion or, equivalently, two different orbitals. This model is expected to provide a good description of a mass-imbalanced cold fermionic mixture in a 3D optical lattice. We use the dynamical mean-field theory to study various physical properties of this system. In particular, we show how orbital-selective physics, observed in multiorbital strongly correlated electron systems, can be realized in such a simple model. We find that the density distribution is a good probe of this orbital-selective crossover from a Fermi-liquid to a non-Fermi-liquid state. Below an ordering temperature T o, which is a function of both the interaction and hopping asymmetry, the system exhibits staggered long-range orbital order. Apart from the special case of the symmetric limit, i.e., Hubbard model, where there is no hopping asymmetry, this orbital order is accompanied by a true charge density wave order for all values of the hopping asymmetry. We calculate the order parameters and various physical quantities including the thermodynamics in both the ordered and disordered phases. We find that the formation of the charge density wave is signaled by an abrupt increase in the sublattice double occupancies. Finally, we propose a new method, entropic chromatography, for cooling fermionic atoms in optical lattices, by exploiting the properties of the AHM. To establish this cooling strategy on a firmer basis, we also discuss the variations in temperature induced by the adiabatic tuning of interactions and hopping parameters. © 2012 American Physical Society.Fil: Winograd, Emilio Andres. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Chitra, R.. Universite Pierre et Marie Curie; FranciaFil: Rozenberg, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2012-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56131Winograd, Emilio Andres; Chitra, R.; Rozenberg, Marcelo Javier; Phase diagram of the asymmetric Hubbard model and an entropic chromatographic method for cooling cold fermions in optical lattices; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 86; 19; 8-2012; 1-141098-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://prb.aps.org/abstract/PRB/v86/i19/e195118info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.86.195118info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:18Zoai:ri.conicet.gov.ar:11336/56131instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:18.702CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Phase diagram of the asymmetric Hubbard model and an entropic chromatographic method for cooling cold fermions in optical lattices |
title |
Phase diagram of the asymmetric Hubbard model and an entropic chromatographic method for cooling cold fermions in optical lattices |
spellingShingle |
Phase diagram of the asymmetric Hubbard model and an entropic chromatographic method for cooling cold fermions in optical lattices Winograd, Emilio Andres Cold Atoms Optical Lattices Strongly Correlated Electron Systems |
title_short |
Phase diagram of the asymmetric Hubbard model and an entropic chromatographic method for cooling cold fermions in optical lattices |
title_full |
Phase diagram of the asymmetric Hubbard model and an entropic chromatographic method for cooling cold fermions in optical lattices |
title_fullStr |
Phase diagram of the asymmetric Hubbard model and an entropic chromatographic method for cooling cold fermions in optical lattices |
title_full_unstemmed |
Phase diagram of the asymmetric Hubbard model and an entropic chromatographic method for cooling cold fermions in optical lattices |
title_sort |
Phase diagram of the asymmetric Hubbard model and an entropic chromatographic method for cooling cold fermions in optical lattices |
dc.creator.none.fl_str_mv |
Winograd, Emilio Andres Chitra, R. Rozenberg, Marcelo Javier |
author |
Winograd, Emilio Andres |
author_facet |
Winograd, Emilio Andres Chitra, R. Rozenberg, Marcelo Javier |
author_role |
author |
author2 |
Chitra, R. Rozenberg, Marcelo Javier |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Cold Atoms Optical Lattices Strongly Correlated Electron Systems |
topic |
Cold Atoms Optical Lattices Strongly Correlated Electron Systems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the phase diagram of the asymmetric Hubbard model (AHM), which is characterized by different values of the hopping for the two spin projections of a fermion or, equivalently, two different orbitals. This model is expected to provide a good description of a mass-imbalanced cold fermionic mixture in a 3D optical lattice. We use the dynamical mean-field theory to study various physical properties of this system. In particular, we show how orbital-selective physics, observed in multiorbital strongly correlated electron systems, can be realized in such a simple model. We find that the density distribution is a good probe of this orbital-selective crossover from a Fermi-liquid to a non-Fermi-liquid state. Below an ordering temperature T o, which is a function of both the interaction and hopping asymmetry, the system exhibits staggered long-range orbital order. Apart from the special case of the symmetric limit, i.e., Hubbard model, where there is no hopping asymmetry, this orbital order is accompanied by a true charge density wave order for all values of the hopping asymmetry. We calculate the order parameters and various physical quantities including the thermodynamics in both the ordered and disordered phases. We find that the formation of the charge density wave is signaled by an abrupt increase in the sublattice double occupancies. Finally, we propose a new method, entropic chromatography, for cooling fermionic atoms in optical lattices, by exploiting the properties of the AHM. To establish this cooling strategy on a firmer basis, we also discuss the variations in temperature induced by the adiabatic tuning of interactions and hopping parameters. © 2012 American Physical Society. Fil: Winograd, Emilio Andres. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Chitra, R.. Universite Pierre et Marie Curie; Francia Fil: Rozenberg, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
We study the phase diagram of the asymmetric Hubbard model (AHM), which is characterized by different values of the hopping for the two spin projections of a fermion or, equivalently, two different orbitals. This model is expected to provide a good description of a mass-imbalanced cold fermionic mixture in a 3D optical lattice. We use the dynamical mean-field theory to study various physical properties of this system. In particular, we show how orbital-selective physics, observed in multiorbital strongly correlated electron systems, can be realized in such a simple model. We find that the density distribution is a good probe of this orbital-selective crossover from a Fermi-liquid to a non-Fermi-liquid state. Below an ordering temperature T o, which is a function of both the interaction and hopping asymmetry, the system exhibits staggered long-range orbital order. Apart from the special case of the symmetric limit, i.e., Hubbard model, where there is no hopping asymmetry, this orbital order is accompanied by a true charge density wave order for all values of the hopping asymmetry. We calculate the order parameters and various physical quantities including the thermodynamics in both the ordered and disordered phases. We find that the formation of the charge density wave is signaled by an abrupt increase in the sublattice double occupancies. Finally, we propose a new method, entropic chromatography, for cooling fermionic atoms in optical lattices, by exploiting the properties of the AHM. To establish this cooling strategy on a firmer basis, we also discuss the variations in temperature induced by the adiabatic tuning of interactions and hopping parameters. © 2012 American Physical Society. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/56131 Winograd, Emilio Andres; Chitra, R.; Rozenberg, Marcelo Javier; Phase diagram of the asymmetric Hubbard model and an entropic chromatographic method for cooling cold fermions in optical lattices; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 86; 19; 8-2012; 1-14 1098-0121 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/56131 |
identifier_str_mv |
Winograd, Emilio Andres; Chitra, R.; Rozenberg, Marcelo Javier; Phase diagram of the asymmetric Hubbard model and an entropic chromatographic method for cooling cold fermions in optical lattices; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 86; 19; 8-2012; 1-14 1098-0121 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://prb.aps.org/abstract/PRB/v86/i19/e195118 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.86.195118 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614181918081024 |
score |
13.070432 |