Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere
- Autores
- Fuster, Valeria de Los Angeles; Urretavizcaya, Guillermina; Castro, Facundo
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the present work the formation of nanocrystalline magnesium hydride by reactive mechanical alloying (RMA) of a mixture of magnesium and 10 wt.% graphite flakes is reported. The synthesis was done at room temperature under 5 bar of hydrogen using a low energy milling device. Magnesium without graphite was also milled as a reference material. We determine phase evolution by X-ray diffraction (XRD), thermal dehydriding properties by differential scanning calorimetry (DSC) and morphological and microstructural characteristics by laser granulometry, BET surface analysis, optical microscopy and scanning electron microscopy (SEM), at different stages of the milling process. The formation of MgH2 occurs faster in the graphite-added material, due to the lubricant properties of graphite. It reaches a hydrogen capacity of 6.2 ± 0.1 wt.% H in 50 h, whereas the reference material needs 100 h to load 7.1 ± 0.1 wt.% H. During the synthesis, both materials follow the same sequence of microstructural and morphological changes, though in different time scales. After the synthesis, both materials present similar microstructural and morphological characteristics. As regards dehydriding properties, we found that graphite plays a catalytic role in the decomposition of magnesium hydride. The graphite-added material decomposes always at lower temperatures than the reference material. Additionally, we observe that particle size instead of crystallite size is the relevant property that influences hydrogen desorption kinetics.
Fil: Fuster, Valeria de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; Argentina
Fil: Urretavizcaya, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; Argentina
Fil: Castro, Facundo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina - Materia
-
METAL HYDRIDES
MECHANICAL ALLOYING
THERMAL ANALYSIS
MICROSTRUCTURE
MAGNESIUM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/244027
Ver los metadatos del registro completo
id |
CONICETDig_075ec08e69daf2d86588a5ba0604fa48 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/244027 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphereFuster, Valeria de Los AngelesUrretavizcaya, GuillerminaCastro, FacundoMETAL HYDRIDESMECHANICAL ALLOYINGTHERMAL ANALYSISMICROSTRUCTUREMAGNESIUMhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2In the present work the formation of nanocrystalline magnesium hydride by reactive mechanical alloying (RMA) of a mixture of magnesium and 10 wt.% graphite flakes is reported. The synthesis was done at room temperature under 5 bar of hydrogen using a low energy milling device. Magnesium without graphite was also milled as a reference material. We determine phase evolution by X-ray diffraction (XRD), thermal dehydriding properties by differential scanning calorimetry (DSC) and morphological and microstructural characteristics by laser granulometry, BET surface analysis, optical microscopy and scanning electron microscopy (SEM), at different stages of the milling process. The formation of MgH2 occurs faster in the graphite-added material, due to the lubricant properties of graphite. It reaches a hydrogen capacity of 6.2 ± 0.1 wt.% H in 50 h, whereas the reference material needs 100 h to load 7.1 ± 0.1 wt.% H. During the synthesis, both materials follow the same sequence of microstructural and morphological changes, though in different time scales. After the synthesis, both materials present similar microstructural and morphological characteristics. As regards dehydriding properties, we found that graphite plays a catalytic role in the decomposition of magnesium hydride. The graphite-added material decomposes always at lower temperatures than the reference material. Additionally, we observe that particle size instead of crystallite size is the relevant property that influences hydrogen desorption kinetics.Fil: Fuster, Valeria de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; ArgentinaFil: Urretavizcaya, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; ArgentinaFil: Castro, Facundo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaElsevier Science SA2009-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/244027Fuster, Valeria de Los Angeles; Urretavizcaya, Guillermina; Castro, Facundo; Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere; Elsevier Science SA; Journal of Alloys and Compounds; 481; 1-2; 7-2009; 673-6800925-8388CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0925838809005222info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2009.03.056info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:15Zoai:ri.conicet.gov.ar:11336/244027instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:15.445CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere |
title |
Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere |
spellingShingle |
Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere Fuster, Valeria de Los Angeles METAL HYDRIDES MECHANICAL ALLOYING THERMAL ANALYSIS MICROSTRUCTURE MAGNESIUM |
title_short |
Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere |
title_full |
Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere |
title_fullStr |
Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere |
title_full_unstemmed |
Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere |
title_sort |
Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere |
dc.creator.none.fl_str_mv |
Fuster, Valeria de Los Angeles Urretavizcaya, Guillermina Castro, Facundo |
author |
Fuster, Valeria de Los Angeles |
author_facet |
Fuster, Valeria de Los Angeles Urretavizcaya, Guillermina Castro, Facundo |
author_role |
author |
author2 |
Urretavizcaya, Guillermina Castro, Facundo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
METAL HYDRIDES MECHANICAL ALLOYING THERMAL ANALYSIS MICROSTRUCTURE MAGNESIUM |
topic |
METAL HYDRIDES MECHANICAL ALLOYING THERMAL ANALYSIS MICROSTRUCTURE MAGNESIUM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In the present work the formation of nanocrystalline magnesium hydride by reactive mechanical alloying (RMA) of a mixture of magnesium and 10 wt.% graphite flakes is reported. The synthesis was done at room temperature under 5 bar of hydrogen using a low energy milling device. Magnesium without graphite was also milled as a reference material. We determine phase evolution by X-ray diffraction (XRD), thermal dehydriding properties by differential scanning calorimetry (DSC) and morphological and microstructural characteristics by laser granulometry, BET surface analysis, optical microscopy and scanning electron microscopy (SEM), at different stages of the milling process. The formation of MgH2 occurs faster in the graphite-added material, due to the lubricant properties of graphite. It reaches a hydrogen capacity of 6.2 ± 0.1 wt.% H in 50 h, whereas the reference material needs 100 h to load 7.1 ± 0.1 wt.% H. During the synthesis, both materials follow the same sequence of microstructural and morphological changes, though in different time scales. After the synthesis, both materials present similar microstructural and morphological characteristics. As regards dehydriding properties, we found that graphite plays a catalytic role in the decomposition of magnesium hydride. The graphite-added material decomposes always at lower temperatures than the reference material. Additionally, we observe that particle size instead of crystallite size is the relevant property that influences hydrogen desorption kinetics. Fil: Fuster, Valeria de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; Argentina Fil: Urretavizcaya, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; Argentina Fil: Castro, Facundo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina |
description |
In the present work the formation of nanocrystalline magnesium hydride by reactive mechanical alloying (RMA) of a mixture of magnesium and 10 wt.% graphite flakes is reported. The synthesis was done at room temperature under 5 bar of hydrogen using a low energy milling device. Magnesium without graphite was also milled as a reference material. We determine phase evolution by X-ray diffraction (XRD), thermal dehydriding properties by differential scanning calorimetry (DSC) and morphological and microstructural characteristics by laser granulometry, BET surface analysis, optical microscopy and scanning electron microscopy (SEM), at different stages of the milling process. The formation of MgH2 occurs faster in the graphite-added material, due to the lubricant properties of graphite. It reaches a hydrogen capacity of 6.2 ± 0.1 wt.% H in 50 h, whereas the reference material needs 100 h to load 7.1 ± 0.1 wt.% H. During the synthesis, both materials follow the same sequence of microstructural and morphological changes, though in different time scales. After the synthesis, both materials present similar microstructural and morphological characteristics. As regards dehydriding properties, we found that graphite plays a catalytic role in the decomposition of magnesium hydride. The graphite-added material decomposes always at lower temperatures than the reference material. Additionally, we observe that particle size instead of crystallite size is the relevant property that influences hydrogen desorption kinetics. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/244027 Fuster, Valeria de Los Angeles; Urretavizcaya, Guillermina; Castro, Facundo; Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere; Elsevier Science SA; Journal of Alloys and Compounds; 481; 1-2; 7-2009; 673-680 0925-8388 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/244027 |
identifier_str_mv |
Fuster, Valeria de Los Angeles; Urretavizcaya, Guillermina; Castro, Facundo; Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere; Elsevier Science SA; Journal of Alloys and Compounds; 481; 1-2; 7-2009; 673-680 0925-8388 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0925838809005222 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2009.03.056 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science SA |
publisher.none.fl_str_mv |
Elsevier Science SA |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613059470950400 |
score |
13.070432 |