Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere

Autores
Fuster, Valeria de Los Angeles; Urretavizcaya, Guillermina; Castro, Facundo
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the present work the formation of nanocrystalline magnesium hydride by reactive mechanical alloying (RMA) of a mixture of magnesium and 10 wt.% graphite flakes is reported. The synthesis was done at room temperature under 5 bar of hydrogen using a low energy milling device. Magnesium without graphite was also milled as a reference material. We determine phase evolution by X-ray diffraction (XRD), thermal dehydriding properties by differential scanning calorimetry (DSC) and morphological and microstructural characteristics by laser granulometry, BET surface analysis, optical microscopy and scanning electron microscopy (SEM), at different stages of the milling process. The formation of MgH2 occurs faster in the graphite-added material, due to the lubricant properties of graphite. It reaches a hydrogen capacity of 6.2 ± 0.1 wt.% H in 50 h, whereas the reference material needs 100 h to load 7.1 ± 0.1 wt.% H. During the synthesis, both materials follow the same sequence of microstructural and morphological changes, though in different time scales. After the synthesis, both materials present similar microstructural and morphological characteristics. As regards dehydriding properties, we found that graphite plays a catalytic role in the decomposition of magnesium hydride. The graphite-added material decomposes always at lower temperatures than the reference material. Additionally, we observe that particle size instead of crystallite size is the relevant property that influences hydrogen desorption kinetics.
Fil: Fuster, Valeria de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; Argentina
Fil: Urretavizcaya, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; Argentina
Fil: Castro, Facundo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Materia
METAL HYDRIDES
MECHANICAL ALLOYING
THERMAL ANALYSIS
MICROSTRUCTURE
MAGNESIUM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/244027

id CONICETDig_075ec08e69daf2d86588a5ba0604fa48
oai_identifier_str oai:ri.conicet.gov.ar:11336/244027
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphereFuster, Valeria de Los AngelesUrretavizcaya, GuillerminaCastro, FacundoMETAL HYDRIDESMECHANICAL ALLOYINGTHERMAL ANALYSISMICROSTRUCTUREMAGNESIUMhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2In the present work the formation of nanocrystalline magnesium hydride by reactive mechanical alloying (RMA) of a mixture of magnesium and 10 wt.% graphite flakes is reported. The synthesis was done at room temperature under 5 bar of hydrogen using a low energy milling device. Magnesium without graphite was also milled as a reference material. We determine phase evolution by X-ray diffraction (XRD), thermal dehydriding properties by differential scanning calorimetry (DSC) and morphological and microstructural characteristics by laser granulometry, BET surface analysis, optical microscopy and scanning electron microscopy (SEM), at different stages of the milling process. The formation of MgH2 occurs faster in the graphite-added material, due to the lubricant properties of graphite. It reaches a hydrogen capacity of 6.2 ± 0.1 wt.% H in 50 h, whereas the reference material needs 100 h to load 7.1 ± 0.1 wt.% H. During the synthesis, both materials follow the same sequence of microstructural and morphological changes, though in different time scales. After the synthesis, both materials present similar microstructural and morphological characteristics. As regards dehydriding properties, we found that graphite plays a catalytic role in the decomposition of magnesium hydride. The graphite-added material decomposes always at lower temperatures than the reference material. Additionally, we observe that particle size instead of crystallite size is the relevant property that influences hydrogen desorption kinetics.Fil: Fuster, Valeria de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; ArgentinaFil: Urretavizcaya, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; ArgentinaFil: Castro, Facundo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaElsevier Science SA2009-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/244027Fuster, Valeria de Los Angeles; Urretavizcaya, Guillermina; Castro, Facundo; Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere; Elsevier Science SA; Journal of Alloys and Compounds; 481; 1-2; 7-2009; 673-6800925-8388CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0925838809005222info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2009.03.056info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:15Zoai:ri.conicet.gov.ar:11336/244027instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:15.445CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere
title Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere
spellingShingle Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere
Fuster, Valeria de Los Angeles
METAL HYDRIDES
MECHANICAL ALLOYING
THERMAL ANALYSIS
MICROSTRUCTURE
MAGNESIUM
title_short Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere
title_full Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere
title_fullStr Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere
title_full_unstemmed Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere
title_sort Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere
dc.creator.none.fl_str_mv Fuster, Valeria de Los Angeles
Urretavizcaya, Guillermina
Castro, Facundo
author Fuster, Valeria de Los Angeles
author_facet Fuster, Valeria de Los Angeles
Urretavizcaya, Guillermina
Castro, Facundo
author_role author
author2 Urretavizcaya, Guillermina
Castro, Facundo
author2_role author
author
dc.subject.none.fl_str_mv METAL HYDRIDES
MECHANICAL ALLOYING
THERMAL ANALYSIS
MICROSTRUCTURE
MAGNESIUM
topic METAL HYDRIDES
MECHANICAL ALLOYING
THERMAL ANALYSIS
MICROSTRUCTURE
MAGNESIUM
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In the present work the formation of nanocrystalline magnesium hydride by reactive mechanical alloying (RMA) of a mixture of magnesium and 10 wt.% graphite flakes is reported. The synthesis was done at room temperature under 5 bar of hydrogen using a low energy milling device. Magnesium without graphite was also milled as a reference material. We determine phase evolution by X-ray diffraction (XRD), thermal dehydriding properties by differential scanning calorimetry (DSC) and morphological and microstructural characteristics by laser granulometry, BET surface analysis, optical microscopy and scanning electron microscopy (SEM), at different stages of the milling process. The formation of MgH2 occurs faster in the graphite-added material, due to the lubricant properties of graphite. It reaches a hydrogen capacity of 6.2 ± 0.1 wt.% H in 50 h, whereas the reference material needs 100 h to load 7.1 ± 0.1 wt.% H. During the synthesis, both materials follow the same sequence of microstructural and morphological changes, though in different time scales. After the synthesis, both materials present similar microstructural and morphological characteristics. As regards dehydriding properties, we found that graphite plays a catalytic role in the decomposition of magnesium hydride. The graphite-added material decomposes always at lower temperatures than the reference material. Additionally, we observe that particle size instead of crystallite size is the relevant property that influences hydrogen desorption kinetics.
Fil: Fuster, Valeria de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; Argentina
Fil: Urretavizcaya, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; Argentina
Fil: Castro, Facundo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
description In the present work the formation of nanocrystalline magnesium hydride by reactive mechanical alloying (RMA) of a mixture of magnesium and 10 wt.% graphite flakes is reported. The synthesis was done at room temperature under 5 bar of hydrogen using a low energy milling device. Magnesium without graphite was also milled as a reference material. We determine phase evolution by X-ray diffraction (XRD), thermal dehydriding properties by differential scanning calorimetry (DSC) and morphological and microstructural characteristics by laser granulometry, BET surface analysis, optical microscopy and scanning electron microscopy (SEM), at different stages of the milling process. The formation of MgH2 occurs faster in the graphite-added material, due to the lubricant properties of graphite. It reaches a hydrogen capacity of 6.2 ± 0.1 wt.% H in 50 h, whereas the reference material needs 100 h to load 7.1 ± 0.1 wt.% H. During the synthesis, both materials follow the same sequence of microstructural and morphological changes, though in different time scales. After the synthesis, both materials present similar microstructural and morphological characteristics. As regards dehydriding properties, we found that graphite plays a catalytic role in the decomposition of magnesium hydride. The graphite-added material decomposes always at lower temperatures than the reference material. Additionally, we observe that particle size instead of crystallite size is the relevant property that influences hydrogen desorption kinetics.
publishDate 2009
dc.date.none.fl_str_mv 2009-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/244027
Fuster, Valeria de Los Angeles; Urretavizcaya, Guillermina; Castro, Facundo; Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere; Elsevier Science SA; Journal of Alloys and Compounds; 481; 1-2; 7-2009; 673-680
0925-8388
CONICET Digital
CONICET
url http://hdl.handle.net/11336/244027
identifier_str_mv Fuster, Valeria de Los Angeles; Urretavizcaya, Guillermina; Castro, Facundo; Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere; Elsevier Science SA; Journal of Alloys and Compounds; 481; 1-2; 7-2009; 673-680
0925-8388
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0925838809005222
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2009.03.056
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science SA
publisher.none.fl_str_mv Elsevier Science SA
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613059470950400
score 13.070432