Mathematical model for the bulk polymerization of styrene using the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide. I. Chemical initiation by sequential deco...

Autores
Berkenwald, Emilio; Spies, Cecilia Andrea; Cortés, Jorge Cerna; Morales, Graciela; Estenoz, Diana Alejandra
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this study, we experimentally and theoretically investigated the use of the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide (DEKTP) in the bulk polymerization of styrene. The experimental study consisted of a series of isothermal batch polymerizations at different temperatures (120 and 130 ºC) with different initiator concentrations (0.005, 0.01, and 0.02 mol/L). A mathematical model was developed to predict the evolution of the reacting chemical species and the produced molecular weight distributions. The kinetic model included chemical and thermal initiation, propagation, transfer to the monomer, termination by combination, and reinitiation reactions. The simulation results predict the concentration of diradicals, monoradicals, and polymeric chains, characterized by the number of undecomposed peroxide groups. The experimental results showed that at reaction temperatures of 120–130 ºC, initiation by DEKTP produced an increase in the polymerization rates (Rp’s) and average molecular weights, depending on the initiator concentration, due to sequential decomposition. The mathematical model was adjusted and validated with the experimental data. The theoretical predictions were in very good agreement with the experimental results. Also, an optimum initiator concentration was observed that achieved high Rp’s and high molecular weights simultaneously. For polymerization temperatures of 120–130 ºC, the optimum concentration was 0.01 mol/L.
Fil: Berkenwald, Emilio. Instituto Tecnologico de Buenos Aires; Argentina
Fil: Spies, Cecilia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Cortés, Jorge Cerna. Centro de Investigaciones En Química Aplicada; México
Fil: Morales, Graciela. Centro de Investigaciones En Química Aplicada; México
Fil: Estenoz, Diana Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Materia
Initiators
Kinetics (Polym.)
Polystyrene
Molecular Weight Distribution/Molar Mass Distribution
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/10904

id CONICETDig_075c023223d083c708c881f75c63941a
oai_identifier_str oai:ri.conicet.gov.ar:11336/10904
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mathematical model for the bulk polymerization of styrene using the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide. I. Chemical initiation by sequential decompositionBerkenwald, EmilioSpies, Cecilia AndreaCortés, Jorge CernaMorales, GracielaEstenoz, Diana AlejandraInitiatorsKinetics (Polym.)PolystyreneMolecular Weight Distribution/Molar Mass Distributionhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In this study, we experimentally and theoretically investigated the use of the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide (DEKTP) in the bulk polymerization of styrene. The experimental study consisted of a series of isothermal batch polymerizations at different temperatures (120 and 130 ºC) with different initiator concentrations (0.005, 0.01, and 0.02 mol/L). A mathematical model was developed to predict the evolution of the reacting chemical species and the produced molecular weight distributions. The kinetic model included chemical and thermal initiation, propagation, transfer to the monomer, termination by combination, and reinitiation reactions. The simulation results predict the concentration of diradicals, monoradicals, and polymeric chains, characterized by the number of undecomposed peroxide groups. The experimental results showed that at reaction temperatures of 120–130 ºC, initiation by DEKTP produced an increase in the polymerization rates (Rp’s) and average molecular weights, depending on the initiator concentration, due to sequential decomposition. The mathematical model was adjusted and validated with the experimental data. The theoretical predictions were in very good agreement with the experimental results. Also, an optimum initiator concentration was observed that achieved high Rp’s and high molecular weights simultaneously. For polymerization temperatures of 120–130 ºC, the optimum concentration was 0.01 mol/L.Fil: Berkenwald, Emilio. Instituto Tecnologico de Buenos Aires; ArgentinaFil: Spies, Cecilia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Cortés, Jorge Cerna. Centro de Investigaciones En Química Aplicada; MéxicoFil: Morales, Graciela. Centro de Investigaciones En Química Aplicada; MéxicoFil: Estenoz, Diana Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaJohn Wiley & Sons Inc2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/10904Berkenwald, Emilio; Spies, Cecilia Andrea; Cortés, Jorge Cerna; Morales, Graciela; Estenoz, Diana Alejandra; Mathematical model for the bulk polymerization of styrene using the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide. I. Chemical initiation by sequential decomposition; John Wiley & Sons Inc; Journal Of Applied Polymer Science; 128; 3-2012; 776-7860021-8995enginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/app.38221/abstractinfo:eu-repo/semantics/altIdentifier/doi/10.1002/app.38221info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:41Zoai:ri.conicet.gov.ar:11336/10904instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:41.896CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mathematical model for the bulk polymerization of styrene using the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide. I. Chemical initiation by sequential decomposition
title Mathematical model for the bulk polymerization of styrene using the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide. I. Chemical initiation by sequential decomposition
spellingShingle Mathematical model for the bulk polymerization of styrene using the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide. I. Chemical initiation by sequential decomposition
Berkenwald, Emilio
Initiators
Kinetics (Polym.)
Polystyrene
Molecular Weight Distribution/Molar Mass Distribution
title_short Mathematical model for the bulk polymerization of styrene using the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide. I. Chemical initiation by sequential decomposition
title_full Mathematical model for the bulk polymerization of styrene using the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide. I. Chemical initiation by sequential decomposition
title_fullStr Mathematical model for the bulk polymerization of styrene using the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide. I. Chemical initiation by sequential decomposition
title_full_unstemmed Mathematical model for the bulk polymerization of styrene using the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide. I. Chemical initiation by sequential decomposition
title_sort Mathematical model for the bulk polymerization of styrene using the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide. I. Chemical initiation by sequential decomposition
dc.creator.none.fl_str_mv Berkenwald, Emilio
Spies, Cecilia Andrea
Cortés, Jorge Cerna
Morales, Graciela
Estenoz, Diana Alejandra
author Berkenwald, Emilio
author_facet Berkenwald, Emilio
Spies, Cecilia Andrea
Cortés, Jorge Cerna
Morales, Graciela
Estenoz, Diana Alejandra
author_role author
author2 Spies, Cecilia Andrea
Cortés, Jorge Cerna
Morales, Graciela
Estenoz, Diana Alejandra
author2_role author
author
author
author
dc.subject.none.fl_str_mv Initiators
Kinetics (Polym.)
Polystyrene
Molecular Weight Distribution/Molar Mass Distribution
topic Initiators
Kinetics (Polym.)
Polystyrene
Molecular Weight Distribution/Molar Mass Distribution
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this study, we experimentally and theoretically investigated the use of the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide (DEKTP) in the bulk polymerization of styrene. The experimental study consisted of a series of isothermal batch polymerizations at different temperatures (120 and 130 ºC) with different initiator concentrations (0.005, 0.01, and 0.02 mol/L). A mathematical model was developed to predict the evolution of the reacting chemical species and the produced molecular weight distributions. The kinetic model included chemical and thermal initiation, propagation, transfer to the monomer, termination by combination, and reinitiation reactions. The simulation results predict the concentration of diradicals, monoradicals, and polymeric chains, characterized by the number of undecomposed peroxide groups. The experimental results showed that at reaction temperatures of 120–130 ºC, initiation by DEKTP produced an increase in the polymerization rates (Rp’s) and average molecular weights, depending on the initiator concentration, due to sequential decomposition. The mathematical model was adjusted and validated with the experimental data. The theoretical predictions were in very good agreement with the experimental results. Also, an optimum initiator concentration was observed that achieved high Rp’s and high molecular weights simultaneously. For polymerization temperatures of 120–130 ºC, the optimum concentration was 0.01 mol/L.
Fil: Berkenwald, Emilio. Instituto Tecnologico de Buenos Aires; Argentina
Fil: Spies, Cecilia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Cortés, Jorge Cerna. Centro de Investigaciones En Química Aplicada; México
Fil: Morales, Graciela. Centro de Investigaciones En Química Aplicada; México
Fil: Estenoz, Diana Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
description In this study, we experimentally and theoretically investigated the use of the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide (DEKTP) in the bulk polymerization of styrene. The experimental study consisted of a series of isothermal batch polymerizations at different temperatures (120 and 130 ºC) with different initiator concentrations (0.005, 0.01, and 0.02 mol/L). A mathematical model was developed to predict the evolution of the reacting chemical species and the produced molecular weight distributions. The kinetic model included chemical and thermal initiation, propagation, transfer to the monomer, termination by combination, and reinitiation reactions. The simulation results predict the concentration of diradicals, monoradicals, and polymeric chains, characterized by the number of undecomposed peroxide groups. The experimental results showed that at reaction temperatures of 120–130 ºC, initiation by DEKTP produced an increase in the polymerization rates (Rp’s) and average molecular weights, depending on the initiator concentration, due to sequential decomposition. The mathematical model was adjusted and validated with the experimental data. The theoretical predictions were in very good agreement with the experimental results. Also, an optimum initiator concentration was observed that achieved high Rp’s and high molecular weights simultaneously. For polymerization temperatures of 120–130 ºC, the optimum concentration was 0.01 mol/L.
publishDate 2012
dc.date.none.fl_str_mv 2012-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/10904
Berkenwald, Emilio; Spies, Cecilia Andrea; Cortés, Jorge Cerna; Morales, Graciela; Estenoz, Diana Alejandra; Mathematical model for the bulk polymerization of styrene using the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide. I. Chemical initiation by sequential decomposition; John Wiley & Sons Inc; Journal Of Applied Polymer Science; 128; 3-2012; 776-786
0021-8995
url http://hdl.handle.net/11336/10904
identifier_str_mv Berkenwald, Emilio; Spies, Cecilia Andrea; Cortés, Jorge Cerna; Morales, Graciela; Estenoz, Diana Alejandra; Mathematical model for the bulk polymerization of styrene using the symmetrical cyclic trifunctional initiator diethyl ketone triperoxide. I. Chemical initiation by sequential decomposition; John Wiley & Sons Inc; Journal Of Applied Polymer Science; 128; 3-2012; 776-786
0021-8995
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/app.38221/abstract
info:eu-repo/semantics/altIdentifier/doi/10.1002/app.38221
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Inc
publisher.none.fl_str_mv John Wiley & Sons Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613637094768640
score 13.070432