Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity
- Autores
- Weygand, James M.; Matthaeus, W. H.; El Alaoui, M.; Dasso, Sergio Ricardo; Kivelson, M. G.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Magnetic field data from the Cluster spacecraft in the magnetospheric plasma sheet are employed to determine the correlation scale and the magnetic Taylor microscale from simultaneous multiple‐point measurements for multiple intervals over a range of mean magnetic field directions for three different levels of geomagnetic activity. We have determined that in the plasma sheet the correlation scale along the mean magnetic field direction decreases from 19,500 ± 2200 to 13,100 ± 700 km as the auroral electrojet activity increases from quiet (<80 nT) to active conditions (>200 nT). The reverse occurs for the correlation scale perpendicular to the magnetic field, which increases from 8200 ± 600 km to 13,000 ± 2100 km as the auroral electrojet activity increases from quiet to active conditions. This variation of the correlation scale with geomagnetic activity may mean either a change in the scale size of the turbulence driver or may mean a change in the predominance of one over another type of turbulence driving mechanism. Unlike the correlation scale, the Taylor scale does not show any clear variation with geomagnetic activity. We find that the Taylor scale is longer parallel to the magnetic field than perpendicular to it for all levels of geomagnetic activity. The correlation and Taylor scales may be used to estimate the effective magnetic Reynolds numbers separately for each angular channel. Reynolds numbers were found to be approximately independent of the angle relative to the mean magnetic field. These results may be useful in magnetohydrodynamic modeling of the magnetosphere and can contribute to our understanding of energetic particle diffusion in the magnetosphere.
Fil: Weygand, James M.. University of California; Estados Unidos
Fil: Matthaeus, W. H.. University of Delaware; Estados Unidos
Fil: El Alaoui, M.. University of California; Estados Unidos
Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Kivelson, M. G.. University of California; Estados Unidos - Materia
-
magnetosphere
turbulence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/20159
Ver los metadatos del registro completo
id |
CONICETDig_0706db0705ad6c71d1f8302d8658214f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/20159 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activityWeygand, James M.Matthaeus, W. H.El Alaoui, M.Dasso, Sergio RicardoKivelson, M. G.magnetosphereturbulencehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Magnetic field data from the Cluster spacecraft in the magnetospheric plasma sheet are employed to determine the correlation scale and the magnetic Taylor microscale from simultaneous multiple‐point measurements for multiple intervals over a range of mean magnetic field directions for three different levels of geomagnetic activity. We have determined that in the plasma sheet the correlation scale along the mean magnetic field direction decreases from 19,500 ± 2200 to 13,100 ± 700 km as the auroral electrojet activity increases from quiet (<80 nT) to active conditions (>200 nT). The reverse occurs for the correlation scale perpendicular to the magnetic field, which increases from 8200 ± 600 km to 13,000 ± 2100 km as the auroral electrojet activity increases from quiet to active conditions. This variation of the correlation scale with geomagnetic activity may mean either a change in the scale size of the turbulence driver or may mean a change in the predominance of one over another type of turbulence driving mechanism. Unlike the correlation scale, the Taylor scale does not show any clear variation with geomagnetic activity. We find that the Taylor scale is longer parallel to the magnetic field than perpendicular to it for all levels of geomagnetic activity. The correlation and Taylor scales may be used to estimate the effective magnetic Reynolds numbers separately for each angular channel. Reynolds numbers were found to be approximately independent of the angle relative to the mean magnetic field. These results may be useful in magnetohydrodynamic modeling of the magnetosphere and can contribute to our understanding of energetic particle diffusion in the magnetosphere.Fil: Weygand, James M.. University of California; Estados UnidosFil: Matthaeus, W. H.. University of Delaware; Estados UnidosFil: El Alaoui, M.. University of California; Estados UnidosFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Kivelson, M. G.. University of California; Estados UnidosAmerican Geophysical Union2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20159Weygand, James M.; Matthaeus, W. H.; El Alaoui, M.; Dasso, Sergio Ricardo; Kivelson, M. G.; Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity; American Geophysical Union; Journal of Geophysical Research; 115; A12; 12-2010; 1-120148-0227CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1029/2010JA015499info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1029/2010JA015499/fullinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:13Zoai:ri.conicet.gov.ar:11336/20159instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:13.843CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity |
title |
Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity |
spellingShingle |
Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity Weygand, James M. magnetosphere turbulence |
title_short |
Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity |
title_full |
Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity |
title_fullStr |
Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity |
title_full_unstemmed |
Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity |
title_sort |
Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity |
dc.creator.none.fl_str_mv |
Weygand, James M. Matthaeus, W. H. El Alaoui, M. Dasso, Sergio Ricardo Kivelson, M. G. |
author |
Weygand, James M. |
author_facet |
Weygand, James M. Matthaeus, W. H. El Alaoui, M. Dasso, Sergio Ricardo Kivelson, M. G. |
author_role |
author |
author2 |
Matthaeus, W. H. El Alaoui, M. Dasso, Sergio Ricardo Kivelson, M. G. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
magnetosphere turbulence |
topic |
magnetosphere turbulence |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Magnetic field data from the Cluster spacecraft in the magnetospheric plasma sheet are employed to determine the correlation scale and the magnetic Taylor microscale from simultaneous multiple‐point measurements for multiple intervals over a range of mean magnetic field directions for three different levels of geomagnetic activity. We have determined that in the plasma sheet the correlation scale along the mean magnetic field direction decreases from 19,500 ± 2200 to 13,100 ± 700 km as the auroral electrojet activity increases from quiet (<80 nT) to active conditions (>200 nT). The reverse occurs for the correlation scale perpendicular to the magnetic field, which increases from 8200 ± 600 km to 13,000 ± 2100 km as the auroral electrojet activity increases from quiet to active conditions. This variation of the correlation scale with geomagnetic activity may mean either a change in the scale size of the turbulence driver or may mean a change in the predominance of one over another type of turbulence driving mechanism. Unlike the correlation scale, the Taylor scale does not show any clear variation with geomagnetic activity. We find that the Taylor scale is longer parallel to the magnetic field than perpendicular to it for all levels of geomagnetic activity. The correlation and Taylor scales may be used to estimate the effective magnetic Reynolds numbers separately for each angular channel. Reynolds numbers were found to be approximately independent of the angle relative to the mean magnetic field. These results may be useful in magnetohydrodynamic modeling of the magnetosphere and can contribute to our understanding of energetic particle diffusion in the magnetosphere. Fil: Weygand, James M.. University of California; Estados Unidos Fil: Matthaeus, W. H.. University of Delaware; Estados Unidos Fil: El Alaoui, M.. University of California; Estados Unidos Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Kivelson, M. G.. University of California; Estados Unidos |
description |
Magnetic field data from the Cluster spacecraft in the magnetospheric plasma sheet are employed to determine the correlation scale and the magnetic Taylor microscale from simultaneous multiple‐point measurements for multiple intervals over a range of mean magnetic field directions for three different levels of geomagnetic activity. We have determined that in the plasma sheet the correlation scale along the mean magnetic field direction decreases from 19,500 ± 2200 to 13,100 ± 700 km as the auroral electrojet activity increases from quiet (<80 nT) to active conditions (>200 nT). The reverse occurs for the correlation scale perpendicular to the magnetic field, which increases from 8200 ± 600 km to 13,000 ± 2100 km as the auroral electrojet activity increases from quiet to active conditions. This variation of the correlation scale with geomagnetic activity may mean either a change in the scale size of the turbulence driver or may mean a change in the predominance of one over another type of turbulence driving mechanism. Unlike the correlation scale, the Taylor scale does not show any clear variation with geomagnetic activity. We find that the Taylor scale is longer parallel to the magnetic field than perpendicular to it for all levels of geomagnetic activity. The correlation and Taylor scales may be used to estimate the effective magnetic Reynolds numbers separately for each angular channel. Reynolds numbers were found to be approximately independent of the angle relative to the mean magnetic field. These results may be useful in magnetohydrodynamic modeling of the magnetosphere and can contribute to our understanding of energetic particle diffusion in the magnetosphere. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/20159 Weygand, James M.; Matthaeus, W. H.; El Alaoui, M.; Dasso, Sergio Ricardo; Kivelson, M. G.; Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity; American Geophysical Union; Journal of Geophysical Research; 115; A12; 12-2010; 1-12 0148-0227 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/20159 |
identifier_str_mv |
Weygand, James M.; Matthaeus, W. H.; El Alaoui, M.; Dasso, Sergio Ricardo; Kivelson, M. G.; Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity; American Geophysical Union; Journal of Geophysical Research; 115; A12; 12-2010; 1-12 0148-0227 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1029/2010JA015499 info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1029/2010JA015499/full |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Geophysical Union |
publisher.none.fl_str_mv |
American Geophysical Union |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613948878356480 |
score |
13.070432 |