Physical principles underpinning molecular-level protein evolution

Autores
Vila, Jorge Alberto
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Since protein mutations are the main driving force of evolution at a molecular level, a proper analysis of the factors controlling them—such as the proteins’ robustness, the evolutionary pathways, the number of ancestors, the epistasis, the post-translational modifications, and the location and the order of mutations—will enable us to find a response to several crucial queries in evolutionary biology. Among them, we highlight the following: At the molecular level, what factors determine whether protein evolution is repeatable? Aiming at finding an answer to this and several other significant questions behind protein evolvability, we distinguish two evolutionary models in our analysis: convergent and divergent, based on whether or not a “target sequence” needs to be reached after n mutational steps beginning with a wild-type protein sequence (from an unknown ancestor). Preliminary results suggest—regardless of whether the evolution is convergent or divergent—a tight relationship between the thermodynamic hypothesis (or Anfinsen’s dogma) and the protein evolution at the molecular level. This conjecture will allow us to uncover how fundamental physical principles guide protein evolution and to gain a deeper grasp of mutationally driven evolutionary processes and the factors that influence them. Breaking down complex evolutionary problems into manageable pieces—without compromising the vision of the problem as a whole—could lead to effective solutions to critical evolutionary biology challenges, paving the way for further progress in this field.
Fil: Vila, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Materia
Anfinsen
Hipotesis Termodinamica
Protein Folding
THERMODYNAMIC HYPOTHESIS
PROTEIN EVOLUTION
PROTEIN STABILITY AND REVERSIBILITY
EPISTASIS
EVOLUTIONARY PATHS
EVOLUTIONARY MODELS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/271222

id CONICETDig_06f88241a890eb183bcf311b09e34ad6
oai_identifier_str oai:ri.conicet.gov.ar:11336/271222
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Physical principles underpinning molecular-level protein evolutionVila, Jorge AlbertoAnfinsenHipotesis TermodinamicaProtein FoldingTHERMODYNAMIC HYPOTHESISPROTEIN EVOLUTIONPROTEIN STABILITY AND REVERSIBILITYEPISTASISEVOLUTIONARY PATHSEVOLUTIONARY MODELShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Since protein mutations are the main driving force of evolution at a molecular level, a proper analysis of the factors controlling them—such as the proteins’ robustness, the evolutionary pathways, the number of ancestors, the epistasis, the post-translational modifications, and the location and the order of mutations—will enable us to find a response to several crucial queries in evolutionary biology. Among them, we highlight the following: At the molecular level, what factors determine whether protein evolution is repeatable? Aiming at finding an answer to this and several other significant questions behind protein evolvability, we distinguish two evolutionary models in our analysis: convergent and divergent, based on whether or not a “target sequence” needs to be reached after n mutational steps beginning with a wild-type protein sequence (from an unknown ancestor). Preliminary results suggest—regardless of whether the evolution is convergent or divergent—a tight relationship between the thermodynamic hypothesis (or Anfinsen’s dogma) and the protein evolution at the molecular level. This conjecture will allow us to uncover how fundamental physical principles guide protein evolution and to gain a deeper grasp of mutationally driven evolutionary processes and the factors that influence them. Breaking down complex evolutionary problems into manageable pieces—without compromising the vision of the problem as a whole—could lead to effective solutions to critical evolutionary biology challenges, paving the way for further progress in this field.Fil: Vila, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaSpringer2025-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/271222Vila, Jorge Alberto; Physical principles underpinning molecular-level protein evolution; Springer; European Biophysics Journal With Biophysics Letters; 54; 5; 6-2025; 201-2110175-7571CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00249-025-01776-6info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00249-025-01776-6info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2412.16245info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:54Zoai:ri.conicet.gov.ar:11336/271222instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:55.278CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Physical principles underpinning molecular-level protein evolution
title Physical principles underpinning molecular-level protein evolution
spellingShingle Physical principles underpinning molecular-level protein evolution
Vila, Jorge Alberto
Anfinsen
Hipotesis Termodinamica
Protein Folding
THERMODYNAMIC HYPOTHESIS
PROTEIN EVOLUTION
PROTEIN STABILITY AND REVERSIBILITY
EPISTASIS
EVOLUTIONARY PATHS
EVOLUTIONARY MODELS
title_short Physical principles underpinning molecular-level protein evolution
title_full Physical principles underpinning molecular-level protein evolution
title_fullStr Physical principles underpinning molecular-level protein evolution
title_full_unstemmed Physical principles underpinning molecular-level protein evolution
title_sort Physical principles underpinning molecular-level protein evolution
dc.creator.none.fl_str_mv Vila, Jorge Alberto
author Vila, Jorge Alberto
author_facet Vila, Jorge Alberto
author_role author
dc.subject.none.fl_str_mv Anfinsen
Hipotesis Termodinamica
Protein Folding
THERMODYNAMIC HYPOTHESIS
PROTEIN EVOLUTION
PROTEIN STABILITY AND REVERSIBILITY
EPISTASIS
EVOLUTIONARY PATHS
EVOLUTIONARY MODELS
topic Anfinsen
Hipotesis Termodinamica
Protein Folding
THERMODYNAMIC HYPOTHESIS
PROTEIN EVOLUTION
PROTEIN STABILITY AND REVERSIBILITY
EPISTASIS
EVOLUTIONARY PATHS
EVOLUTIONARY MODELS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Since protein mutations are the main driving force of evolution at a molecular level, a proper analysis of the factors controlling them—such as the proteins’ robustness, the evolutionary pathways, the number of ancestors, the epistasis, the post-translational modifications, and the location and the order of mutations—will enable us to find a response to several crucial queries in evolutionary biology. Among them, we highlight the following: At the molecular level, what factors determine whether protein evolution is repeatable? Aiming at finding an answer to this and several other significant questions behind protein evolvability, we distinguish two evolutionary models in our analysis: convergent and divergent, based on whether or not a “target sequence” needs to be reached after n mutational steps beginning with a wild-type protein sequence (from an unknown ancestor). Preliminary results suggest—regardless of whether the evolution is convergent or divergent—a tight relationship between the thermodynamic hypothesis (or Anfinsen’s dogma) and the protein evolution at the molecular level. This conjecture will allow us to uncover how fundamental physical principles guide protein evolution and to gain a deeper grasp of mutationally driven evolutionary processes and the factors that influence them. Breaking down complex evolutionary problems into manageable pieces—without compromising the vision of the problem as a whole—could lead to effective solutions to critical evolutionary biology challenges, paving the way for further progress in this field.
Fil: Vila, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
description Since protein mutations are the main driving force of evolution at a molecular level, a proper analysis of the factors controlling them—such as the proteins’ robustness, the evolutionary pathways, the number of ancestors, the epistasis, the post-translational modifications, and the location and the order of mutations—will enable us to find a response to several crucial queries in evolutionary biology. Among them, we highlight the following: At the molecular level, what factors determine whether protein evolution is repeatable? Aiming at finding an answer to this and several other significant questions behind protein evolvability, we distinguish two evolutionary models in our analysis: convergent and divergent, based on whether or not a “target sequence” needs to be reached after n mutational steps beginning with a wild-type protein sequence (from an unknown ancestor). Preliminary results suggest—regardless of whether the evolution is convergent or divergent—a tight relationship between the thermodynamic hypothesis (or Anfinsen’s dogma) and the protein evolution at the molecular level. This conjecture will allow us to uncover how fundamental physical principles guide protein evolution and to gain a deeper grasp of mutationally driven evolutionary processes and the factors that influence them. Breaking down complex evolutionary problems into manageable pieces—without compromising the vision of the problem as a whole—could lead to effective solutions to critical evolutionary biology challenges, paving the way for further progress in this field.
publishDate 2025
dc.date.none.fl_str_mv 2025-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/271222
Vila, Jorge Alberto; Physical principles underpinning molecular-level protein evolution; Springer; European Biophysics Journal With Biophysics Letters; 54; 5; 6-2025; 201-211
0175-7571
CONICET Digital
CONICET
url http://hdl.handle.net/11336/271222
identifier_str_mv Vila, Jorge Alberto; Physical principles underpinning molecular-level protein evolution; Springer; European Biophysics Journal With Biophysics Letters; 54; 5; 6-2025; 201-211
0175-7571
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00249-025-01776-6
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00249-025-01776-6
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2412.16245
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614040218763264
score 13.070432