Physical principles underpinning molecular-level protein evolution
- Autores
- Vila, Jorge Alberto
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Since protein mutations are the main driving force of evolution at a molecular level, a proper analysis of the factors controlling them—such as the proteins’ robustness, the evolutionary pathways, the number of ancestors, the epistasis, the post-translational modifications, and the location and the order of mutations—will enable us to find a response to several crucial queries in evolutionary biology. Among them, we highlight the following: At the molecular level, what factors determine whether protein evolution is repeatable? Aiming at finding an answer to this and several other significant questions behind protein evolvability, we distinguish two evolutionary models in our analysis: convergent and divergent, based on whether or not a “target sequence” needs to be reached after n mutational steps beginning with a wild-type protein sequence (from an unknown ancestor). Preliminary results suggest—regardless of whether the evolution is convergent or divergent—a tight relationship between the thermodynamic hypothesis (or Anfinsen’s dogma) and the protein evolution at the molecular level. This conjecture will allow us to uncover how fundamental physical principles guide protein evolution and to gain a deeper grasp of mutationally driven evolutionary processes and the factors that influence them. Breaking down complex evolutionary problems into manageable pieces—without compromising the vision of the problem as a whole—could lead to effective solutions to critical evolutionary biology challenges, paving the way for further progress in this field.
Fil: Vila, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina - Materia
-
Anfinsen
Hipotesis Termodinamica
Protein Folding
THERMODYNAMIC HYPOTHESIS
PROTEIN EVOLUTION
PROTEIN STABILITY AND REVERSIBILITY
EPISTASIS
EVOLUTIONARY PATHS
EVOLUTIONARY MODELS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/271222
Ver los metadatos del registro completo
id |
CONICETDig_06f88241a890eb183bcf311b09e34ad6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/271222 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Physical principles underpinning molecular-level protein evolutionVila, Jorge AlbertoAnfinsenHipotesis TermodinamicaProtein FoldingTHERMODYNAMIC HYPOTHESISPROTEIN EVOLUTIONPROTEIN STABILITY AND REVERSIBILITYEPISTASISEVOLUTIONARY PATHSEVOLUTIONARY MODELShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Since protein mutations are the main driving force of evolution at a molecular level, a proper analysis of the factors controlling them—such as the proteins’ robustness, the evolutionary pathways, the number of ancestors, the epistasis, the post-translational modifications, and the location and the order of mutations—will enable us to find a response to several crucial queries in evolutionary biology. Among them, we highlight the following: At the molecular level, what factors determine whether protein evolution is repeatable? Aiming at finding an answer to this and several other significant questions behind protein evolvability, we distinguish two evolutionary models in our analysis: convergent and divergent, based on whether or not a “target sequence” needs to be reached after n mutational steps beginning with a wild-type protein sequence (from an unknown ancestor). Preliminary results suggest—regardless of whether the evolution is convergent or divergent—a tight relationship between the thermodynamic hypothesis (or Anfinsen’s dogma) and the protein evolution at the molecular level. This conjecture will allow us to uncover how fundamental physical principles guide protein evolution and to gain a deeper grasp of mutationally driven evolutionary processes and the factors that influence them. Breaking down complex evolutionary problems into manageable pieces—without compromising the vision of the problem as a whole—could lead to effective solutions to critical evolutionary biology challenges, paving the way for further progress in this field.Fil: Vila, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaSpringer2025-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/271222Vila, Jorge Alberto; Physical principles underpinning molecular-level protein evolution; Springer; European Biophysics Journal With Biophysics Letters; 54; 5; 6-2025; 201-2110175-7571CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00249-025-01776-6info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00249-025-01776-6info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2412.16245info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:54Zoai:ri.conicet.gov.ar:11336/271222instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:55.278CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Physical principles underpinning molecular-level protein evolution |
title |
Physical principles underpinning molecular-level protein evolution |
spellingShingle |
Physical principles underpinning molecular-level protein evolution Vila, Jorge Alberto Anfinsen Hipotesis Termodinamica Protein Folding THERMODYNAMIC HYPOTHESIS PROTEIN EVOLUTION PROTEIN STABILITY AND REVERSIBILITY EPISTASIS EVOLUTIONARY PATHS EVOLUTIONARY MODELS |
title_short |
Physical principles underpinning molecular-level protein evolution |
title_full |
Physical principles underpinning molecular-level protein evolution |
title_fullStr |
Physical principles underpinning molecular-level protein evolution |
title_full_unstemmed |
Physical principles underpinning molecular-level protein evolution |
title_sort |
Physical principles underpinning molecular-level protein evolution |
dc.creator.none.fl_str_mv |
Vila, Jorge Alberto |
author |
Vila, Jorge Alberto |
author_facet |
Vila, Jorge Alberto |
author_role |
author |
dc.subject.none.fl_str_mv |
Anfinsen Hipotesis Termodinamica Protein Folding THERMODYNAMIC HYPOTHESIS PROTEIN EVOLUTION PROTEIN STABILITY AND REVERSIBILITY EPISTASIS EVOLUTIONARY PATHS EVOLUTIONARY MODELS |
topic |
Anfinsen Hipotesis Termodinamica Protein Folding THERMODYNAMIC HYPOTHESIS PROTEIN EVOLUTION PROTEIN STABILITY AND REVERSIBILITY EPISTASIS EVOLUTIONARY PATHS EVOLUTIONARY MODELS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Since protein mutations are the main driving force of evolution at a molecular level, a proper analysis of the factors controlling them—such as the proteins’ robustness, the evolutionary pathways, the number of ancestors, the epistasis, the post-translational modifications, and the location and the order of mutations—will enable us to find a response to several crucial queries in evolutionary biology. Among them, we highlight the following: At the molecular level, what factors determine whether protein evolution is repeatable? Aiming at finding an answer to this and several other significant questions behind protein evolvability, we distinguish two evolutionary models in our analysis: convergent and divergent, based on whether or not a “target sequence” needs to be reached after n mutational steps beginning with a wild-type protein sequence (from an unknown ancestor). Preliminary results suggest—regardless of whether the evolution is convergent or divergent—a tight relationship between the thermodynamic hypothesis (or Anfinsen’s dogma) and the protein evolution at the molecular level. This conjecture will allow us to uncover how fundamental physical principles guide protein evolution and to gain a deeper grasp of mutationally driven evolutionary processes and the factors that influence them. Breaking down complex evolutionary problems into manageable pieces—without compromising the vision of the problem as a whole—could lead to effective solutions to critical evolutionary biology challenges, paving the way for further progress in this field. Fil: Vila, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina |
description |
Since protein mutations are the main driving force of evolution at a molecular level, a proper analysis of the factors controlling them—such as the proteins’ robustness, the evolutionary pathways, the number of ancestors, the epistasis, the post-translational modifications, and the location and the order of mutations—will enable us to find a response to several crucial queries in evolutionary biology. Among them, we highlight the following: At the molecular level, what factors determine whether protein evolution is repeatable? Aiming at finding an answer to this and several other significant questions behind protein evolvability, we distinguish two evolutionary models in our analysis: convergent and divergent, based on whether or not a “target sequence” needs to be reached after n mutational steps beginning with a wild-type protein sequence (from an unknown ancestor). Preliminary results suggest—regardless of whether the evolution is convergent or divergent—a tight relationship between the thermodynamic hypothesis (or Anfinsen’s dogma) and the protein evolution at the molecular level. This conjecture will allow us to uncover how fundamental physical principles guide protein evolution and to gain a deeper grasp of mutationally driven evolutionary processes and the factors that influence them. Breaking down complex evolutionary problems into manageable pieces—without compromising the vision of the problem as a whole—could lead to effective solutions to critical evolutionary biology challenges, paving the way for further progress in this field. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/271222 Vila, Jorge Alberto; Physical principles underpinning molecular-level protein evolution; Springer; European Biophysics Journal With Biophysics Letters; 54; 5; 6-2025; 201-211 0175-7571 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/271222 |
identifier_str_mv |
Vila, Jorge Alberto; Physical principles underpinning molecular-level protein evolution; Springer; European Biophysics Journal With Biophysics Letters; 54; 5; 6-2025; 201-211 0175-7571 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00249-025-01776-6 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00249-025-01776-6 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2412.16245 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614040218763264 |
score |
13.070432 |