Stable Matchings in the Marriage Model with Indifferences

Autores
Juarez, Noelia Mariel; Oviedo, Jorge Armando
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For the marriage model with indifferences, we define an equivalence relation over the stable matching set. We identify a sufficient condition, the closing property, under which we can extend results of the classical model (without indifferences) to the equivalence classes of the stable matching set. This condition allows us to extend the lattice structure over classes of equivalences and the rural hospital theorem.
Fil: Juarez, Noelia Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Oviedo, Jorge Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Materia
INDIFFERENCES
LATTICE STRUCTURE
STABILITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/141239

id CONICETDig_06c1dd812cd129f01e5d94dded795310
oai_identifier_str oai:ri.conicet.gov.ar:11336/141239
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stable Matchings in the Marriage Model with IndifferencesJuarez, Noelia MarielOviedo, Jorge ArmandoINDIFFERENCESLATTICE STRUCTURESTABILITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For the marriage model with indifferences, we define an equivalence relation over the stable matching set. We identify a sufficient condition, the closing property, under which we can extend results of the classical model (without indifferences) to the equivalence classes of the stable matching set. This condition allows us to extend the lattice structure over classes of equivalences and the rural hospital theorem.Fil: Juarez, Noelia Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Oviedo, Jorge Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaOperations Research Society of China2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/141239Juarez, Noelia Mariel; Oviedo, Jorge Armando; Stable Matchings in the Marriage Model with Indifferences; Operations Research Society of China; Journal of the Operations Research Society of China; 8-2020; 1-322194-668X2194-6698CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs40305-020-00315-8info:eu-repo/semantics/altIdentifier/doi/10.1007/s40305-020-00315-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:51:31Zoai:ri.conicet.gov.ar:11336/141239instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:51:31.82CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stable Matchings in the Marriage Model with Indifferences
title Stable Matchings in the Marriage Model with Indifferences
spellingShingle Stable Matchings in the Marriage Model with Indifferences
Juarez, Noelia Mariel
INDIFFERENCES
LATTICE STRUCTURE
STABILITY
title_short Stable Matchings in the Marriage Model with Indifferences
title_full Stable Matchings in the Marriage Model with Indifferences
title_fullStr Stable Matchings in the Marriage Model with Indifferences
title_full_unstemmed Stable Matchings in the Marriage Model with Indifferences
title_sort Stable Matchings in the Marriage Model with Indifferences
dc.creator.none.fl_str_mv Juarez, Noelia Mariel
Oviedo, Jorge Armando
author Juarez, Noelia Mariel
author_facet Juarez, Noelia Mariel
Oviedo, Jorge Armando
author_role author
author2 Oviedo, Jorge Armando
author2_role author
dc.subject.none.fl_str_mv INDIFFERENCES
LATTICE STRUCTURE
STABILITY
topic INDIFFERENCES
LATTICE STRUCTURE
STABILITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv For the marriage model with indifferences, we define an equivalence relation over the stable matching set. We identify a sufficient condition, the closing property, under which we can extend results of the classical model (without indifferences) to the equivalence classes of the stable matching set. This condition allows us to extend the lattice structure over classes of equivalences and the rural hospital theorem.
Fil: Juarez, Noelia Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Oviedo, Jorge Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
description For the marriage model with indifferences, we define an equivalence relation over the stable matching set. We identify a sufficient condition, the closing property, under which we can extend results of the classical model (without indifferences) to the equivalence classes of the stable matching set. This condition allows us to extend the lattice structure over classes of equivalences and the rural hospital theorem.
publishDate 2020
dc.date.none.fl_str_mv 2020-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/141239
Juarez, Noelia Mariel; Oviedo, Jorge Armando; Stable Matchings in the Marriage Model with Indifferences; Operations Research Society of China; Journal of the Operations Research Society of China; 8-2020; 1-32
2194-668X
2194-6698
CONICET Digital
CONICET
url http://hdl.handle.net/11336/141239
identifier_str_mv Juarez, Noelia Mariel; Oviedo, Jorge Armando; Stable Matchings in the Marriage Model with Indifferences; Operations Research Society of China; Journal of the Operations Research Society of China; 8-2020; 1-32
2194-668X
2194-6698
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs40305-020-00315-8
info:eu-repo/semantics/altIdentifier/doi/10.1007/s40305-020-00315-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Operations Research Society of China
publisher.none.fl_str_mv Operations Research Society of China
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606860666503168
score 13.001348