Stable Matchings in the Marriage Model with Indifferences
- Autores
- Juarez, Noelia Mariel; Oviedo, Jorge Armando
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For the marriage model with indifferences, we define an equivalence relation over the stable matching set. We identify a sufficient condition, the closing property, under which we can extend results of the classical model (without indifferences) to the equivalence classes of the stable matching set. This condition allows us to extend the lattice structure over classes of equivalences and the rural hospital theorem.
Fil: Juarez, Noelia Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Oviedo, Jorge Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina - Materia
-
INDIFFERENCES
LATTICE STRUCTURE
STABILITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/141239
Ver los metadatos del registro completo
id |
CONICETDig_06c1dd812cd129f01e5d94dded795310 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/141239 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stable Matchings in the Marriage Model with IndifferencesJuarez, Noelia MarielOviedo, Jorge ArmandoINDIFFERENCESLATTICE STRUCTURESTABILITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For the marriage model with indifferences, we define an equivalence relation over the stable matching set. We identify a sufficient condition, the closing property, under which we can extend results of the classical model (without indifferences) to the equivalence classes of the stable matching set. This condition allows us to extend the lattice structure over classes of equivalences and the rural hospital theorem.Fil: Juarez, Noelia Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Oviedo, Jorge Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaOperations Research Society of China2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/141239Juarez, Noelia Mariel; Oviedo, Jorge Armando; Stable Matchings in the Marriage Model with Indifferences; Operations Research Society of China; Journal of the Operations Research Society of China; 8-2020; 1-322194-668X2194-6698CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs40305-020-00315-8info:eu-repo/semantics/altIdentifier/doi/10.1007/s40305-020-00315-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:51:31Zoai:ri.conicet.gov.ar:11336/141239instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:51:31.82CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stable Matchings in the Marriage Model with Indifferences |
title |
Stable Matchings in the Marriage Model with Indifferences |
spellingShingle |
Stable Matchings in the Marriage Model with Indifferences Juarez, Noelia Mariel INDIFFERENCES LATTICE STRUCTURE STABILITY |
title_short |
Stable Matchings in the Marriage Model with Indifferences |
title_full |
Stable Matchings in the Marriage Model with Indifferences |
title_fullStr |
Stable Matchings in the Marriage Model with Indifferences |
title_full_unstemmed |
Stable Matchings in the Marriage Model with Indifferences |
title_sort |
Stable Matchings in the Marriage Model with Indifferences |
dc.creator.none.fl_str_mv |
Juarez, Noelia Mariel Oviedo, Jorge Armando |
author |
Juarez, Noelia Mariel |
author_facet |
Juarez, Noelia Mariel Oviedo, Jorge Armando |
author_role |
author |
author2 |
Oviedo, Jorge Armando |
author2_role |
author |
dc.subject.none.fl_str_mv |
INDIFFERENCES LATTICE STRUCTURE STABILITY |
topic |
INDIFFERENCES LATTICE STRUCTURE STABILITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For the marriage model with indifferences, we define an equivalence relation over the stable matching set. We identify a sufficient condition, the closing property, under which we can extend results of the classical model (without indifferences) to the equivalence classes of the stable matching set. This condition allows us to extend the lattice structure over classes of equivalences and the rural hospital theorem. Fil: Juarez, Noelia Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina Fil: Oviedo, Jorge Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina |
description |
For the marriage model with indifferences, we define an equivalence relation over the stable matching set. We identify a sufficient condition, the closing property, under which we can extend results of the classical model (without indifferences) to the equivalence classes of the stable matching set. This condition allows us to extend the lattice structure over classes of equivalences and the rural hospital theorem. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/141239 Juarez, Noelia Mariel; Oviedo, Jorge Armando; Stable Matchings in the Marriage Model with Indifferences; Operations Research Society of China; Journal of the Operations Research Society of China; 8-2020; 1-32 2194-668X 2194-6698 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/141239 |
identifier_str_mv |
Juarez, Noelia Mariel; Oviedo, Jorge Armando; Stable Matchings in the Marriage Model with Indifferences; Operations Research Society of China; Journal of the Operations Research Society of China; 8-2020; 1-32 2194-668X 2194-6698 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs40305-020-00315-8 info:eu-repo/semantics/altIdentifier/doi/10.1007/s40305-020-00315-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Operations Research Society of China |
publisher.none.fl_str_mv |
Operations Research Society of China |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606860666503168 |
score |
13.001348 |