Spectral-hole memory for light at the single-photon level

Autores
Kutluer, Kutlu; Pascual Winter, María Florencia; Dajczgewand, Julian Eduardo; Ledingham, Patrick M.; Mazzera, Margherita; Chanelière, Thierry; De Riedmatten, Hugues
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We demonstrate a solid-state spin-wave optical memory based on stopped light in a spectral hole. A long-lived narrow spectral hole is created by optical pumping in the inhomogeneous absorption profile of a Pr3+:Y2SiO5 crystal. Optical pulses sent through the spectral hole experience a strong reduction of their group velocity and are spatially compressed in the crystal. A short Raman pulse transfers the optical excitation to the spin state before the light pulse exits the crystal, effectively stopping the light. After a controllable delay, a second Raman pulse is sent, which leads to the emission of the stored photons. We reach storage and retrieval efficiencies for bright pulses of up to 39% in a 5-mm-long crystal. We also show that our device works at the single-photon level by storing and retrieving 3-μs-long weak coherent pulses with efficiencies up to 31%, demonstrating the most efficient spin-wave solid-state optical memory at the single-photon level so far. We reach an unconditional noise level of (9±1)×10-3 photons per pulse in a detection window of 4μs, leading to a signal-to-noise ratio of 33±4 for an average input photon number of 1, making our device promising for long-lived storage of nonclassical light.
Fil: Kutluer, Kutlu. Barcelona Institute of Technology; España
Fil: Pascual Winter, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Dajczgewand, Julian Eduardo. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Ledingham, Patrick M.. Barcelona Institute of Technology; España
Fil: Mazzera, Margherita. Barcelona Institute of Technology; España
Fil: Chanelière, Thierry. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia
Fil: De Riedmatten, Hugues. Barcelona Institute of Technology; España
Materia
quantum memory
single photon
quantum information
spectral hole
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/60225

id CONICETDig_06a6a06ef64c3c75204d97db8106053b
oai_identifier_str oai:ri.conicet.gov.ar:11336/60225
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Spectral-hole memory for light at the single-photon levelKutluer, KutluPascual Winter, María FlorenciaDajczgewand, Julian EduardoLedingham, Patrick M.Mazzera, MargheritaChanelière, ThierryDe Riedmatten, Huguesquantum memorysingle photonquantum informationspectral holehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We demonstrate a solid-state spin-wave optical memory based on stopped light in a spectral hole. A long-lived narrow spectral hole is created by optical pumping in the inhomogeneous absorption profile of a Pr3+:Y2SiO5 crystal. Optical pulses sent through the spectral hole experience a strong reduction of their group velocity and are spatially compressed in the crystal. A short Raman pulse transfers the optical excitation to the spin state before the light pulse exits the crystal, effectively stopping the light. After a controllable delay, a second Raman pulse is sent, which leads to the emission of the stored photons. We reach storage and retrieval efficiencies for bright pulses of up to 39% in a 5-mm-long crystal. We also show that our device works at the single-photon level by storing and retrieving 3-μs-long weak coherent pulses with efficiencies up to 31%, demonstrating the most efficient spin-wave solid-state optical memory at the single-photon level so far. We reach an unconditional noise level of (9±1)×10-3 photons per pulse in a detection window of 4μs, leading to a signal-to-noise ratio of 33±4 for an average input photon number of 1, making our device promising for long-lived storage of nonclassical light.Fil: Kutluer, Kutlu. Barcelona Institute of Technology; EspañaFil: Pascual Winter, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Dajczgewand, Julian Eduardo. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; FranciaFil: Ledingham, Patrick M.. Barcelona Institute of Technology; EspañaFil: Mazzera, Margherita. Barcelona Institute of Technology; EspañaFil: Chanelière, Thierry. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; FranciaFil: De Riedmatten, Hugues. Barcelona Institute of Technology; EspañaAmerican Physical Society2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60225Kutluer, Kutlu; Pascual Winter, María Florencia; Dajczgewand, Julian Eduardo; Ledingham, Patrick M.; Mazzera, Margherita; et al.; Spectral-hole memory for light at the single-photon level; American Physical Society; Physical Review A; 93; 4; 4-2016; 40302-403072469-9934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.93.040302info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.040302info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:21:50Zoai:ri.conicet.gov.ar:11336/60225instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:21:51.191CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Spectral-hole memory for light at the single-photon level
title Spectral-hole memory for light at the single-photon level
spellingShingle Spectral-hole memory for light at the single-photon level
Kutluer, Kutlu
quantum memory
single photon
quantum information
spectral hole
title_short Spectral-hole memory for light at the single-photon level
title_full Spectral-hole memory for light at the single-photon level
title_fullStr Spectral-hole memory for light at the single-photon level
title_full_unstemmed Spectral-hole memory for light at the single-photon level
title_sort Spectral-hole memory for light at the single-photon level
dc.creator.none.fl_str_mv Kutluer, Kutlu
Pascual Winter, María Florencia
Dajczgewand, Julian Eduardo
Ledingham, Patrick M.
Mazzera, Margherita
Chanelière, Thierry
De Riedmatten, Hugues
author Kutluer, Kutlu
author_facet Kutluer, Kutlu
Pascual Winter, María Florencia
Dajczgewand, Julian Eduardo
Ledingham, Patrick M.
Mazzera, Margherita
Chanelière, Thierry
De Riedmatten, Hugues
author_role author
author2 Pascual Winter, María Florencia
Dajczgewand, Julian Eduardo
Ledingham, Patrick M.
Mazzera, Margherita
Chanelière, Thierry
De Riedmatten, Hugues
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv quantum memory
single photon
quantum information
spectral hole
topic quantum memory
single photon
quantum information
spectral hole
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We demonstrate a solid-state spin-wave optical memory based on stopped light in a spectral hole. A long-lived narrow spectral hole is created by optical pumping in the inhomogeneous absorption profile of a Pr3+:Y2SiO5 crystal. Optical pulses sent through the spectral hole experience a strong reduction of their group velocity and are spatially compressed in the crystal. A short Raman pulse transfers the optical excitation to the spin state before the light pulse exits the crystal, effectively stopping the light. After a controllable delay, a second Raman pulse is sent, which leads to the emission of the stored photons. We reach storage and retrieval efficiencies for bright pulses of up to 39% in a 5-mm-long crystal. We also show that our device works at the single-photon level by storing and retrieving 3-μs-long weak coherent pulses with efficiencies up to 31%, demonstrating the most efficient spin-wave solid-state optical memory at the single-photon level so far. We reach an unconditional noise level of (9±1)×10-3 photons per pulse in a detection window of 4μs, leading to a signal-to-noise ratio of 33±4 for an average input photon number of 1, making our device promising for long-lived storage of nonclassical light.
Fil: Kutluer, Kutlu. Barcelona Institute of Technology; España
Fil: Pascual Winter, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Dajczgewand, Julian Eduardo. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Ledingham, Patrick M.. Barcelona Institute of Technology; España
Fil: Mazzera, Margherita. Barcelona Institute of Technology; España
Fil: Chanelière, Thierry. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia
Fil: De Riedmatten, Hugues. Barcelona Institute of Technology; España
description We demonstrate a solid-state spin-wave optical memory based on stopped light in a spectral hole. A long-lived narrow spectral hole is created by optical pumping in the inhomogeneous absorption profile of a Pr3+:Y2SiO5 crystal. Optical pulses sent through the spectral hole experience a strong reduction of their group velocity and are spatially compressed in the crystal. A short Raman pulse transfers the optical excitation to the spin state before the light pulse exits the crystal, effectively stopping the light. After a controllable delay, a second Raman pulse is sent, which leads to the emission of the stored photons. We reach storage and retrieval efficiencies for bright pulses of up to 39% in a 5-mm-long crystal. We also show that our device works at the single-photon level by storing and retrieving 3-μs-long weak coherent pulses with efficiencies up to 31%, demonstrating the most efficient spin-wave solid-state optical memory at the single-photon level so far. We reach an unconditional noise level of (9±1)×10-3 photons per pulse in a detection window of 4μs, leading to a signal-to-noise ratio of 33±4 for an average input photon number of 1, making our device promising for long-lived storage of nonclassical light.
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/60225
Kutluer, Kutlu; Pascual Winter, María Florencia; Dajczgewand, Julian Eduardo; Ledingham, Patrick M.; Mazzera, Margherita; et al.; Spectral-hole memory for light at the single-photon level; American Physical Society; Physical Review A; 93; 4; 4-2016; 40302-40307
2469-9934
CONICET Digital
CONICET
url http://hdl.handle.net/11336/60225
identifier_str_mv Kutluer, Kutlu; Pascual Winter, María Florencia; Dajczgewand, Julian Eduardo; Ledingham, Patrick M.; Mazzera, Margherita; et al.; Spectral-hole memory for light at the single-photon level; American Physical Society; Physical Review A; 93; 4; 4-2016; 40302-40307
2469-9934
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.93.040302
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.040302
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083366204473344
score 13.22299