Galaxy-induced transformation of dark matter haloes
- Autores
- Abadi, Mario Gabriel; Navarro, Julio F.; Fardal, Mark; Babul, Arif; Steinmetz, Matthias
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We use N-body/gasdynamical cosmological simulations to examine the effect of the assembly of a central galaxy on the shape and mass profile of its surrounding dark matter halo. Two series of simulations are compared; one that follows only the evolution of the dark matter component of individual haloes in the proper Λcold dark matter (ΛCDM) cosmological context, and a second series where a baryonic component is added and followed hydrodynamically. The simulations with baryons include radiative cooling but neglect the formation of stars and their feedback. The efficient, unimpeded cooling that results leads most baryons to collect at the halo centre in a centrifugally supported disc which, due to angular momentum losses, is too small and too massive when compared with typical spiral galaxies. This admittedly unrealistic model allows us, nevertheless, to gauge the maximum effect that galaxies may have in transforming their surrounding dark haloes. We find, in agreement with earlier work, that the shape of the halo becomes more axisymmetric: post galaxy assembly, haloes are transformed from triaxial into essentially oblate systems, with well-aligned isopotential contours of roughly constant flattening (〈c/a〉∼ 0.85). Haloes always contract as a result of galaxy assembly, but the effect is substantially less pronounced than predicted by the traditional ‘adiabatic-contraction’ hypothesis. The reduced contraction helps to reconcile ΛCDM haloes with constraints on the dark matter content inside the solar circle and should alleviate the longstanding difficulty of matching simultaneously the scaling properties of galaxy discs and the galaxy luminosity function. The halo contraction we report is also less pronounced than found in earlier simulations, a disagreement which suggests that halo contraction is not solely a function of the initial and final distribution of baryons. Not only how much baryonic mass has been deposited at the centre of a halo matters, but also the mode of its deposition. Although simple formulae might work in particular cases where galaxies form nearly adiabatically, in general it might prove impossible to predict the halo response to galaxy formation without a detailed understanding of a galaxy's detailed assembly history.
Fil: Abadi, Mario Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Navarro, Julio F.. University of Victoria; Canadá
Fil: Fardal, Mark. Massachusetts Institute of Technology; Estados Unidos
Fil: Babul, Arif. University of Victoria; Canadá
Fil: Steinmetz, Matthias. Astrophysikalisches Institut Potsdam; Alemania - Materia
-
Galaxy: disc
Galaxy: formation
Galaxy: kinematics and dynamics
Galaxy: structure - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/277255
Ver los metadatos del registro completo
| id |
CONICETDig_06380128779a095849e4a3887a1f8351 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/277255 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Galaxy-induced transformation of dark matter haloesAbadi, Mario GabrielNavarro, Julio F.Fardal, MarkBabul, ArifSteinmetz, MatthiasGalaxy: discGalaxy: formationGalaxy: kinematics and dynamicsGalaxy: structurehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We use N-body/gasdynamical cosmological simulations to examine the effect of the assembly of a central galaxy on the shape and mass profile of its surrounding dark matter halo. Two series of simulations are compared; one that follows only the evolution of the dark matter component of individual haloes in the proper Λcold dark matter (ΛCDM) cosmological context, and a second series where a baryonic component is added and followed hydrodynamically. The simulations with baryons include radiative cooling but neglect the formation of stars and their feedback. The efficient, unimpeded cooling that results leads most baryons to collect at the halo centre in a centrifugally supported disc which, due to angular momentum losses, is too small and too massive when compared with typical spiral galaxies. This admittedly unrealistic model allows us, nevertheless, to gauge the maximum effect that galaxies may have in transforming their surrounding dark haloes. We find, in agreement with earlier work, that the shape of the halo becomes more axisymmetric: post galaxy assembly, haloes are transformed from triaxial into essentially oblate systems, with well-aligned isopotential contours of roughly constant flattening (〈c/a〉∼ 0.85). Haloes always contract as a result of galaxy assembly, but the effect is substantially less pronounced than predicted by the traditional ‘adiabatic-contraction’ hypothesis. The reduced contraction helps to reconcile ΛCDM haloes with constraints on the dark matter content inside the solar circle and should alleviate the longstanding difficulty of matching simultaneously the scaling properties of galaxy discs and the galaxy luminosity function. The halo contraction we report is also less pronounced than found in earlier simulations, a disagreement which suggests that halo contraction is not solely a function of the initial and final distribution of baryons. Not only how much baryonic mass has been deposited at the centre of a halo matters, but also the mode of its deposition. Although simple formulae might work in particular cases where galaxies form nearly adiabatically, in general it might prove impossible to predict the halo response to galaxy formation without a detailed understanding of a galaxy's detailed assembly history.Fil: Abadi, Mario Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Navarro, Julio F.. University of Victoria; CanadáFil: Fardal, Mark. Massachusetts Institute of Technology; Estados UnidosFil: Babul, Arif. University of Victoria; CanadáFil: Steinmetz, Matthias. Astrophysikalisches Institut Potsdam; AlemaniaWiley Blackwell Publishing, Inc2010-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/octet-streamapplication/pdfhttp://hdl.handle.net/11336/277255Abadi, Mario Gabriel; Navarro, Julio F.; Fardal, Mark; Babul, Arif; Steinmetz, Matthias; Galaxy-induced transformation of dark matter haloes; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 407; 1; 9-2010; 435-4460035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2010.16912.x/fullinfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2010.16912.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:42:54Zoai:ri.conicet.gov.ar:11336/277255instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:42:54.652CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Galaxy-induced transformation of dark matter haloes |
| title |
Galaxy-induced transformation of dark matter haloes |
| spellingShingle |
Galaxy-induced transformation of dark matter haloes Abadi, Mario Gabriel Galaxy: disc Galaxy: formation Galaxy: kinematics and dynamics Galaxy: structure |
| title_short |
Galaxy-induced transformation of dark matter haloes |
| title_full |
Galaxy-induced transformation of dark matter haloes |
| title_fullStr |
Galaxy-induced transformation of dark matter haloes |
| title_full_unstemmed |
Galaxy-induced transformation of dark matter haloes |
| title_sort |
Galaxy-induced transformation of dark matter haloes |
| dc.creator.none.fl_str_mv |
Abadi, Mario Gabriel Navarro, Julio F. Fardal, Mark Babul, Arif Steinmetz, Matthias |
| author |
Abadi, Mario Gabriel |
| author_facet |
Abadi, Mario Gabriel Navarro, Julio F. Fardal, Mark Babul, Arif Steinmetz, Matthias |
| author_role |
author |
| author2 |
Navarro, Julio F. Fardal, Mark Babul, Arif Steinmetz, Matthias |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
Galaxy: disc Galaxy: formation Galaxy: kinematics and dynamics Galaxy: structure |
| topic |
Galaxy: disc Galaxy: formation Galaxy: kinematics and dynamics Galaxy: structure |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We use N-body/gasdynamical cosmological simulations to examine the effect of the assembly of a central galaxy on the shape and mass profile of its surrounding dark matter halo. Two series of simulations are compared; one that follows only the evolution of the dark matter component of individual haloes in the proper Λcold dark matter (ΛCDM) cosmological context, and a second series where a baryonic component is added and followed hydrodynamically. The simulations with baryons include radiative cooling but neglect the formation of stars and their feedback. The efficient, unimpeded cooling that results leads most baryons to collect at the halo centre in a centrifugally supported disc which, due to angular momentum losses, is too small and too massive when compared with typical spiral galaxies. This admittedly unrealistic model allows us, nevertheless, to gauge the maximum effect that galaxies may have in transforming their surrounding dark haloes. We find, in agreement with earlier work, that the shape of the halo becomes more axisymmetric: post galaxy assembly, haloes are transformed from triaxial into essentially oblate systems, with well-aligned isopotential contours of roughly constant flattening (〈c/a〉∼ 0.85). Haloes always contract as a result of galaxy assembly, but the effect is substantially less pronounced than predicted by the traditional ‘adiabatic-contraction’ hypothesis. The reduced contraction helps to reconcile ΛCDM haloes with constraints on the dark matter content inside the solar circle and should alleviate the longstanding difficulty of matching simultaneously the scaling properties of galaxy discs and the galaxy luminosity function. The halo contraction we report is also less pronounced than found in earlier simulations, a disagreement which suggests that halo contraction is not solely a function of the initial and final distribution of baryons. Not only how much baryonic mass has been deposited at the centre of a halo matters, but also the mode of its deposition. Although simple formulae might work in particular cases where galaxies form nearly adiabatically, in general it might prove impossible to predict the halo response to galaxy formation without a detailed understanding of a galaxy's detailed assembly history. Fil: Abadi, Mario Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Navarro, Julio F.. University of Victoria; Canadá Fil: Fardal, Mark. Massachusetts Institute of Technology; Estados Unidos Fil: Babul, Arif. University of Victoria; Canadá Fil: Steinmetz, Matthias. Astrophysikalisches Institut Potsdam; Alemania |
| description |
We use N-body/gasdynamical cosmological simulations to examine the effect of the assembly of a central galaxy on the shape and mass profile of its surrounding dark matter halo. Two series of simulations are compared; one that follows only the evolution of the dark matter component of individual haloes in the proper Λcold dark matter (ΛCDM) cosmological context, and a second series where a baryonic component is added and followed hydrodynamically. The simulations with baryons include radiative cooling but neglect the formation of stars and their feedback. The efficient, unimpeded cooling that results leads most baryons to collect at the halo centre in a centrifugally supported disc which, due to angular momentum losses, is too small and too massive when compared with typical spiral galaxies. This admittedly unrealistic model allows us, nevertheless, to gauge the maximum effect that galaxies may have in transforming their surrounding dark haloes. We find, in agreement with earlier work, that the shape of the halo becomes more axisymmetric: post galaxy assembly, haloes are transformed from triaxial into essentially oblate systems, with well-aligned isopotential contours of roughly constant flattening (〈c/a〉∼ 0.85). Haloes always contract as a result of galaxy assembly, but the effect is substantially less pronounced than predicted by the traditional ‘adiabatic-contraction’ hypothesis. The reduced contraction helps to reconcile ΛCDM haloes with constraints on the dark matter content inside the solar circle and should alleviate the longstanding difficulty of matching simultaneously the scaling properties of galaxy discs and the galaxy luminosity function. The halo contraction we report is also less pronounced than found in earlier simulations, a disagreement which suggests that halo contraction is not solely a function of the initial and final distribution of baryons. Not only how much baryonic mass has been deposited at the centre of a halo matters, but also the mode of its deposition. Although simple formulae might work in particular cases where galaxies form nearly adiabatically, in general it might prove impossible to predict the halo response to galaxy formation without a detailed understanding of a galaxy's detailed assembly history. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/277255 Abadi, Mario Gabriel; Navarro, Julio F.; Fardal, Mark; Babul, Arif; Steinmetz, Matthias; Galaxy-induced transformation of dark matter haloes; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 407; 1; 9-2010; 435-446 0035-8711 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/277255 |
| identifier_str_mv |
Abadi, Mario Gabriel; Navarro, Julio F.; Fardal, Mark; Babul, Arif; Steinmetz, Matthias; Galaxy-induced transformation of dark matter haloes; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 407; 1; 9-2010; 435-446 0035-8711 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2010.16912.x/full info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2010.16912.x |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/octet-stream application/pdf |
| dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
| publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335337429270528 |
| score |
12.441415 |