A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection: Quantitation of fluoroquinolones in water samples
- Autores
- Alcaraz, Mirta Raquel; Bortolato, Santiago Andres; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Matrix augmentation is regularly employed in extended multivariate curve resolution-alternating least-squares (MCR-ALS), as applied to analytical calibration based on second- and third-order data. However, this highly useful concept has almost no correspondence in parallel factor analysis (PARAFAC) of third-order data. In the present work, we propose a strategy to process third-order chromatographic data with matrix fluorescence detection, based on an Augmented PARAFAC model. The latter involves decomposition of a three-way data array augmented along the elution time mode with data for the calibration samples and for each of the test samples. A set of excitation-emission fluorescence matrices, measured at different chromatographic elution times for drinking water samples, containing three fluoroquinolones and uncalibrated interferences, were evaluated using this approach. Augmented PARAFAC exploits the second-order advantage, even in the presence of significant changes in chromatographic profiles from run to run. The obtained relative errors of prediction were ca. 10 % for ofloxacin, ciprofloxacin, and danofloxacin, with a significant enhancement in analytical figures of merit in comparison with previous reports. The results are compared with those furnished by MCR-ALS.
Fil: Alcaraz, Mirta Raquel. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Química. Cátedra de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bortolato, Santiago Andres. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Química. Cátedra de Química Analítica; Argentina
Fil: Olivieri, Alejandro Cesar. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina - Materia
-
Augmented Parallel Factor Analysis
Fluoroquinolones
Liquid Chromatography
Third-Order Data
Water Samples - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/37745
Ver los metadatos del registro completo
id |
CONICETDig_05e00d3b3a6296bde4e78249818149e2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/37745 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection: Quantitation of fluoroquinolones in water samplesAlcaraz, Mirta RaquelBortolato, Santiago AndresGoicoechea, Hector CasimiroOlivieri, Alejandro CesarAugmented Parallel Factor AnalysisFluoroquinolonesLiquid ChromatographyThird-Order DataWater Sampleshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Matrix augmentation is regularly employed in extended multivariate curve resolution-alternating least-squares (MCR-ALS), as applied to analytical calibration based on second- and third-order data. However, this highly useful concept has almost no correspondence in parallel factor analysis (PARAFAC) of third-order data. In the present work, we propose a strategy to process third-order chromatographic data with matrix fluorescence detection, based on an Augmented PARAFAC model. The latter involves decomposition of a three-way data array augmented along the elution time mode with data for the calibration samples and for each of the test samples. A set of excitation-emission fluorescence matrices, measured at different chromatographic elution times for drinking water samples, containing three fluoroquinolones and uncalibrated interferences, were evaluated using this approach. Augmented PARAFAC exploits the second-order advantage, even in the presence of significant changes in chromatographic profiles from run to run. The obtained relative errors of prediction were ca. 10 % for ofloxacin, ciprofloxacin, and danofloxacin, with a significant enhancement in analytical figures of merit in comparison with previous reports. The results are compared with those furnished by MCR-ALS.Fil: Alcaraz, Mirta Raquel. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Química. Cátedra de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bortolato, Santiago Andres. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Química. Cátedra de Química Analítica; ArgentinaFil: Olivieri, Alejandro Cesar. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaSpringer Heidelberg2015-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37745Alcaraz, Mirta Raquel; Bortolato, Santiago Andres; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection: Quantitation of fluoroquinolones in water samples; Springer Heidelberg; Analytical and Bioanalytical Chemistry; 407; 7; 2-2015; 1999-20111618-26421618-2650CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00216-014-8442-zinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00216-014-8442-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:37Zoai:ri.conicet.gov.ar:11336/37745instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:37.322CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection: Quantitation of fluoroquinolones in water samples |
title |
A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection: Quantitation of fluoroquinolones in water samples |
spellingShingle |
A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection: Quantitation of fluoroquinolones in water samples Alcaraz, Mirta Raquel Augmented Parallel Factor Analysis Fluoroquinolones Liquid Chromatography Third-Order Data Water Samples |
title_short |
A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection: Quantitation of fluoroquinolones in water samples |
title_full |
A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection: Quantitation of fluoroquinolones in water samples |
title_fullStr |
A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection: Quantitation of fluoroquinolones in water samples |
title_full_unstemmed |
A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection: Quantitation of fluoroquinolones in water samples |
title_sort |
A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection: Quantitation of fluoroquinolones in water samples |
dc.creator.none.fl_str_mv |
Alcaraz, Mirta Raquel Bortolato, Santiago Andres Goicoechea, Hector Casimiro Olivieri, Alejandro Cesar |
author |
Alcaraz, Mirta Raquel |
author_facet |
Alcaraz, Mirta Raquel Bortolato, Santiago Andres Goicoechea, Hector Casimiro Olivieri, Alejandro Cesar |
author_role |
author |
author2 |
Bortolato, Santiago Andres Goicoechea, Hector Casimiro Olivieri, Alejandro Cesar |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Augmented Parallel Factor Analysis Fluoroquinolones Liquid Chromatography Third-Order Data Water Samples |
topic |
Augmented Parallel Factor Analysis Fluoroquinolones Liquid Chromatography Third-Order Data Water Samples |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Matrix augmentation is regularly employed in extended multivariate curve resolution-alternating least-squares (MCR-ALS), as applied to analytical calibration based on second- and third-order data. However, this highly useful concept has almost no correspondence in parallel factor analysis (PARAFAC) of third-order data. In the present work, we propose a strategy to process third-order chromatographic data with matrix fluorescence detection, based on an Augmented PARAFAC model. The latter involves decomposition of a three-way data array augmented along the elution time mode with data for the calibration samples and for each of the test samples. A set of excitation-emission fluorescence matrices, measured at different chromatographic elution times for drinking water samples, containing three fluoroquinolones and uncalibrated interferences, were evaluated using this approach. Augmented PARAFAC exploits the second-order advantage, even in the presence of significant changes in chromatographic profiles from run to run. The obtained relative errors of prediction were ca. 10 % for ofloxacin, ciprofloxacin, and danofloxacin, with a significant enhancement in analytical figures of merit in comparison with previous reports. The results are compared with those furnished by MCR-ALS. Fil: Alcaraz, Mirta Raquel. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Química. Cátedra de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Bortolato, Santiago Andres. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Química. Cátedra de Química Analítica; Argentina Fil: Olivieri, Alejandro Cesar. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina |
description |
Matrix augmentation is regularly employed in extended multivariate curve resolution-alternating least-squares (MCR-ALS), as applied to analytical calibration based on second- and third-order data. However, this highly useful concept has almost no correspondence in parallel factor analysis (PARAFAC) of third-order data. In the present work, we propose a strategy to process third-order chromatographic data with matrix fluorescence detection, based on an Augmented PARAFAC model. The latter involves decomposition of a three-way data array augmented along the elution time mode with data for the calibration samples and for each of the test samples. A set of excitation-emission fluorescence matrices, measured at different chromatographic elution times for drinking water samples, containing three fluoroquinolones and uncalibrated interferences, were evaluated using this approach. Augmented PARAFAC exploits the second-order advantage, even in the presence of significant changes in chromatographic profiles from run to run. The obtained relative errors of prediction were ca. 10 % for ofloxacin, ciprofloxacin, and danofloxacin, with a significant enhancement in analytical figures of merit in comparison with previous reports. The results are compared with those furnished by MCR-ALS. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/37745 Alcaraz, Mirta Raquel; Bortolato, Santiago Andres; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection: Quantitation of fluoroquinolones in water samples; Springer Heidelberg; Analytical and Bioanalytical Chemistry; 407; 7; 2-2015; 1999-2011 1618-2642 1618-2650 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/37745 |
identifier_str_mv |
Alcaraz, Mirta Raquel; Bortolato, Santiago Andres; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection: Quantitation of fluoroquinolones in water samples; Springer Heidelberg; Analytical and Bioanalytical Chemistry; 407; 7; 2-2015; 1999-2011 1618-2642 1618-2650 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00216-014-8442-z info:eu-repo/semantics/altIdentifier/doi/10.1007/s00216-014-8442-z |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Heidelberg |
publisher.none.fl_str_mv |
Springer Heidelberg |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613657813581824 |
score |
13.070432 |