Impaired associative learning after chronic exposure to pesticides in young adult honey bees

Autores
Mengoni Goñalons, Carolina; Farina, Walter Marcelo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Neonicotinoids are the most widespread insecticides in agriculture, preferred for their low toxicity to mammals and their systemic nature. Nevertheless, there have been increasing concerns regarding their impact on non-target organisms. Glyphosate is also widely used in crops and, therefore, traces of this pesticide are likely to be found together with neonicotinoids. Although glyphosate is considered a herbicide, adverse effects have been found on animal species, including honey bees. Apis mellifera is one of the most important pollinators in agroecosystems and is exposed to both these pesticides. Traces can be found in nectar and pollen of flowers that honey bees visit, but also in honey stores inside the hive. Young workers, which perform in-hive tasks that are crucial for colony maintenance, are potentially exposed to both these contaminated resources. These workers present high plasticity and are susceptible to stimuli that can modulate their behaviour and impact on colony state. Therefore, by performing standardised assays to study sublethal effects of these pesticides, these bees can be used as bioindicators. We studied the effect of chronic joint exposure to fieldrealistic concentrations of the neonicotinoid imidacloprid and glyphosate on gustatory perception and olfactory learning. Both pesticides reduced sucrose responsiveness and had a negative effect on olfactory learning. Glyphosate also reduced food uptake during rearing. The results indicate differential susceptibility according to honey bee age. The two agrochemicals had adverse effects on different aspects of honey bee appetitive behaviour, which could have repercussions for food distribution, propagation of olfactory information and task coordination within the nest.
Fil: Mengoni Goñalons, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Farina, Walter Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Materia
APIS MELLIFERA
FOOD UPTAKE
GLYPHOSATE
IMIDACLOPRID
OLFACTORY LEARNING
RESPONSIVENESS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/89070

id CONICETDig_057f5eb9a96179f229fdb2a0734dad59
oai_identifier_str oai:ri.conicet.gov.ar:11336/89070
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Impaired associative learning after chronic exposure to pesticides in young adult honey beesMengoni Goñalons, CarolinaFarina, Walter MarceloAPIS MELLIFERAFOOD UPTAKEGLYPHOSATEIMIDACLOPRIDOLFACTORY LEARNINGRESPONSIVENESShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Neonicotinoids are the most widespread insecticides in agriculture, preferred for their low toxicity to mammals and their systemic nature. Nevertheless, there have been increasing concerns regarding their impact on non-target organisms. Glyphosate is also widely used in crops and, therefore, traces of this pesticide are likely to be found together with neonicotinoids. Although glyphosate is considered a herbicide, adverse effects have been found on animal species, including honey bees. Apis mellifera is one of the most important pollinators in agroecosystems and is exposed to both these pesticides. Traces can be found in nectar and pollen of flowers that honey bees visit, but also in honey stores inside the hive. Young workers, which perform in-hive tasks that are crucial for colony maintenance, are potentially exposed to both these contaminated resources. These workers present high plasticity and are susceptible to stimuli that can modulate their behaviour and impact on colony state. Therefore, by performing standardised assays to study sublethal effects of these pesticides, these bees can be used as bioindicators. We studied the effect of chronic joint exposure to fieldrealistic concentrations of the neonicotinoid imidacloprid and glyphosate on gustatory perception and olfactory learning. Both pesticides reduced sucrose responsiveness and had a negative effect on olfactory learning. Glyphosate also reduced food uptake during rearing. The results indicate differential susceptibility according to honey bee age. The two agrochemicals had adverse effects on different aspects of honey bee appetitive behaviour, which could have repercussions for food distribution, propagation of olfactory information and task coordination within the nest.Fil: Mengoni Goñalons, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Farina, Walter Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaCompany of Biologists2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89070Mengoni Goñalons, Carolina; Farina, Walter Marcelo; Impaired associative learning after chronic exposure to pesticides in young adult honey bees; Company of Biologists; Journal of Experimental Biology; 221; 7; 4-2018; 1-80022-0949CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://jeb.biologists.org/content/221/7/jeb176644info:eu-repo/semantics/altIdentifier/doi/10.1242/jeb.176644info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:20Zoai:ri.conicet.gov.ar:11336/89070instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:20.96CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Impaired associative learning after chronic exposure to pesticides in young adult honey bees
title Impaired associative learning after chronic exposure to pesticides in young adult honey bees
spellingShingle Impaired associative learning after chronic exposure to pesticides in young adult honey bees
Mengoni Goñalons, Carolina
APIS MELLIFERA
FOOD UPTAKE
GLYPHOSATE
IMIDACLOPRID
OLFACTORY LEARNING
RESPONSIVENESS
title_short Impaired associative learning after chronic exposure to pesticides in young adult honey bees
title_full Impaired associative learning after chronic exposure to pesticides in young adult honey bees
title_fullStr Impaired associative learning after chronic exposure to pesticides in young adult honey bees
title_full_unstemmed Impaired associative learning after chronic exposure to pesticides in young adult honey bees
title_sort Impaired associative learning after chronic exposure to pesticides in young adult honey bees
dc.creator.none.fl_str_mv Mengoni Goñalons, Carolina
Farina, Walter Marcelo
author Mengoni Goñalons, Carolina
author_facet Mengoni Goñalons, Carolina
Farina, Walter Marcelo
author_role author
author2 Farina, Walter Marcelo
author2_role author
dc.subject.none.fl_str_mv APIS MELLIFERA
FOOD UPTAKE
GLYPHOSATE
IMIDACLOPRID
OLFACTORY LEARNING
RESPONSIVENESS
topic APIS MELLIFERA
FOOD UPTAKE
GLYPHOSATE
IMIDACLOPRID
OLFACTORY LEARNING
RESPONSIVENESS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Neonicotinoids are the most widespread insecticides in agriculture, preferred for their low toxicity to mammals and their systemic nature. Nevertheless, there have been increasing concerns regarding their impact on non-target organisms. Glyphosate is also widely used in crops and, therefore, traces of this pesticide are likely to be found together with neonicotinoids. Although glyphosate is considered a herbicide, adverse effects have been found on animal species, including honey bees. Apis mellifera is one of the most important pollinators in agroecosystems and is exposed to both these pesticides. Traces can be found in nectar and pollen of flowers that honey bees visit, but also in honey stores inside the hive. Young workers, which perform in-hive tasks that are crucial for colony maintenance, are potentially exposed to both these contaminated resources. These workers present high plasticity and are susceptible to stimuli that can modulate their behaviour and impact on colony state. Therefore, by performing standardised assays to study sublethal effects of these pesticides, these bees can be used as bioindicators. We studied the effect of chronic joint exposure to fieldrealistic concentrations of the neonicotinoid imidacloprid and glyphosate on gustatory perception and olfactory learning. Both pesticides reduced sucrose responsiveness and had a negative effect on olfactory learning. Glyphosate also reduced food uptake during rearing. The results indicate differential susceptibility according to honey bee age. The two agrochemicals had adverse effects on different aspects of honey bee appetitive behaviour, which could have repercussions for food distribution, propagation of olfactory information and task coordination within the nest.
Fil: Mengoni Goñalons, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Farina, Walter Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
description Neonicotinoids are the most widespread insecticides in agriculture, preferred for their low toxicity to mammals and their systemic nature. Nevertheless, there have been increasing concerns regarding their impact on non-target organisms. Glyphosate is also widely used in crops and, therefore, traces of this pesticide are likely to be found together with neonicotinoids. Although glyphosate is considered a herbicide, adverse effects have been found on animal species, including honey bees. Apis mellifera is one of the most important pollinators in agroecosystems and is exposed to both these pesticides. Traces can be found in nectar and pollen of flowers that honey bees visit, but also in honey stores inside the hive. Young workers, which perform in-hive tasks that are crucial for colony maintenance, are potentially exposed to both these contaminated resources. These workers present high plasticity and are susceptible to stimuli that can modulate their behaviour and impact on colony state. Therefore, by performing standardised assays to study sublethal effects of these pesticides, these bees can be used as bioindicators. We studied the effect of chronic joint exposure to fieldrealistic concentrations of the neonicotinoid imidacloprid and glyphosate on gustatory perception and olfactory learning. Both pesticides reduced sucrose responsiveness and had a negative effect on olfactory learning. Glyphosate also reduced food uptake during rearing. The results indicate differential susceptibility according to honey bee age. The two agrochemicals had adverse effects on different aspects of honey bee appetitive behaviour, which could have repercussions for food distribution, propagation of olfactory information and task coordination within the nest.
publishDate 2018
dc.date.none.fl_str_mv 2018-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/89070
Mengoni Goñalons, Carolina; Farina, Walter Marcelo; Impaired associative learning after chronic exposure to pesticides in young adult honey bees; Company of Biologists; Journal of Experimental Biology; 221; 7; 4-2018; 1-8
0022-0949
CONICET Digital
CONICET
url http://hdl.handle.net/11336/89070
identifier_str_mv Mengoni Goñalons, Carolina; Farina, Walter Marcelo; Impaired associative learning after chronic exposure to pesticides in young adult honey bees; Company of Biologists; Journal of Experimental Biology; 221; 7; 4-2018; 1-8
0022-0949
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://jeb.biologists.org/content/221/7/jeb176644
info:eu-repo/semantics/altIdentifier/doi/10.1242/jeb.176644
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Company of Biologists
publisher.none.fl_str_mv Company of Biologists
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980765677125632
score 12.993085