Anisotropic k-essence cosmologies

Autores
Chimento, Luis Pascual; Forte, Mónica
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate a Bianchi type-I cosmology with k-essence and find the set of models which dissipate the initial anisotropy. There are cosmological models with extended tachyon fields and k-essence having a constant barotropic index. We obtain the conditions leading to a regular bounce of the average geometry and the residual anisotropy on the bounce. For constant potential, we develop purely kinetic k-essence models which are dust dominated in their early stages, dissipate the initial anisotropy, and end in a stable de Sitter accelerated expansion scenario. We show that linear k-field and polynomial kinetic function models evolve asymptotically to Friedmann-Robertson-Walker cosmologies. The linear case is compatible with an asymptotic potential interpolating between Vl -γl, in the shear dominated regime, and Vl -2 at late time. In the polynomial case, the general solution contains cosmological models with an oscillatory average geometry. For linear k-essence, we find the general solution in the Bianchi type-I cosmology when the k field is driven by an inverse square potential. This model shares the same geometry as a quintessence field driven by an exponential potential. © 2006 The American Physical Society.
Fil: Chimento, Luis Pascual. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Forte, Mónica. Facultad de Ciencias Exactas y Naturales; Argentina
Materia
k-essence
Bianchi
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/73168

id CONICETDig_057bc91b049e7af36ff3d0b79e58a459
oai_identifier_str oai:ri.conicet.gov.ar:11336/73168
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Anisotropic k-essence cosmologiesChimento, Luis PascualForte, Mónicak-essenceBianchihttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We investigate a Bianchi type-I cosmology with k-essence and find the set of models which dissipate the initial anisotropy. There are cosmological models with extended tachyon fields and k-essence having a constant barotropic index. We obtain the conditions leading to a regular bounce of the average geometry and the residual anisotropy on the bounce. For constant potential, we develop purely kinetic k-essence models which are dust dominated in their early stages, dissipate the initial anisotropy, and end in a stable de Sitter accelerated expansion scenario. We show that linear k-field and polynomial kinetic function models evolve asymptotically to Friedmann-Robertson-Walker cosmologies. The linear case is compatible with an asymptotic potential interpolating between Vl -γl, in the shear dominated regime, and Vl -2 at late time. In the polynomial case, the general solution contains cosmological models with an oscillatory average geometry. For linear k-essence, we find the general solution in the Bianchi type-I cosmology when the k field is driven by an inverse square potential. This model shares the same geometry as a quintessence field driven by an exponential potential. © 2006 The American Physical Society.Fil: Chimento, Luis Pascual. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Forte, Mónica. Facultad de Ciencias Exactas y Naturales; ArgentinaAmerican Physical Society2006-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/73168Chimento, Luis Pascual; Forte, Mónica; Anisotropic k-essence cosmologies; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 73; 6; 3-2006; 1-91550-7998CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.73.063502info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:23Zoai:ri.conicet.gov.ar:11336/73168instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:24.938CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Anisotropic k-essence cosmologies
title Anisotropic k-essence cosmologies
spellingShingle Anisotropic k-essence cosmologies
Chimento, Luis Pascual
k-essence
Bianchi
title_short Anisotropic k-essence cosmologies
title_full Anisotropic k-essence cosmologies
title_fullStr Anisotropic k-essence cosmologies
title_full_unstemmed Anisotropic k-essence cosmologies
title_sort Anisotropic k-essence cosmologies
dc.creator.none.fl_str_mv Chimento, Luis Pascual
Forte, Mónica
author Chimento, Luis Pascual
author_facet Chimento, Luis Pascual
Forte, Mónica
author_role author
author2 Forte, Mónica
author2_role author
dc.subject.none.fl_str_mv k-essence
Bianchi
topic k-essence
Bianchi
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We investigate a Bianchi type-I cosmology with k-essence and find the set of models which dissipate the initial anisotropy. There are cosmological models with extended tachyon fields and k-essence having a constant barotropic index. We obtain the conditions leading to a regular bounce of the average geometry and the residual anisotropy on the bounce. For constant potential, we develop purely kinetic k-essence models which are dust dominated in their early stages, dissipate the initial anisotropy, and end in a stable de Sitter accelerated expansion scenario. We show that linear k-field and polynomial kinetic function models evolve asymptotically to Friedmann-Robertson-Walker cosmologies. The linear case is compatible with an asymptotic potential interpolating between Vl -γl, in the shear dominated regime, and Vl -2 at late time. In the polynomial case, the general solution contains cosmological models with an oscillatory average geometry. For linear k-essence, we find the general solution in the Bianchi type-I cosmology when the k field is driven by an inverse square potential. This model shares the same geometry as a quintessence field driven by an exponential potential. © 2006 The American Physical Society.
Fil: Chimento, Luis Pascual. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Forte, Mónica. Facultad de Ciencias Exactas y Naturales; Argentina
description We investigate a Bianchi type-I cosmology with k-essence and find the set of models which dissipate the initial anisotropy. There are cosmological models with extended tachyon fields and k-essence having a constant barotropic index. We obtain the conditions leading to a regular bounce of the average geometry and the residual anisotropy on the bounce. For constant potential, we develop purely kinetic k-essence models which are dust dominated in their early stages, dissipate the initial anisotropy, and end in a stable de Sitter accelerated expansion scenario. We show that linear k-field and polynomial kinetic function models evolve asymptotically to Friedmann-Robertson-Walker cosmologies. The linear case is compatible with an asymptotic potential interpolating between Vl -γl, in the shear dominated regime, and Vl -2 at late time. In the polynomial case, the general solution contains cosmological models with an oscillatory average geometry. For linear k-essence, we find the general solution in the Bianchi type-I cosmology when the k field is driven by an inverse square potential. This model shares the same geometry as a quintessence field driven by an exponential potential. © 2006 The American Physical Society.
publishDate 2006
dc.date.none.fl_str_mv 2006-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/73168
Chimento, Luis Pascual; Forte, Mónica; Anisotropic k-essence cosmologies; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 73; 6; 3-2006; 1-9
1550-7998
CONICET Digital
CONICET
url http://hdl.handle.net/11336/73168
identifier_str_mv Chimento, Luis Pascual; Forte, Mónica; Anisotropic k-essence cosmologies; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 73; 6; 3-2006; 1-9
1550-7998
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.73.063502
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269799741128704
score 13.13397