Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms
- Autores
- Longo, Gabriel Sebastian; Olvera de la Cruz, Monica; Szleifer, Igal
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a molecular theory to study the adsorption of different species within pH-sensitive hydrogel nanofilms. The theoretical framework allows for a molecular-level description of all the components of the system, and it explicitly accounts for the acid-base equilibrium. We concentrate in the adsorption of hexahistidine, one of the most widely used tags in bio-related systems, particularly in chromatography of proteins. The adsorption of hexahistidine within a grafted polyacid hydrogel film shows a non-monotonic dependence on the solution pH. Depending on the salt concentration, the density of the polymer network, and the bulk concentration of peptide, substantial adsorption is predicted in the intermediate pH range where both the network and the amino acids are charged. To enhance the electrostatic attractions, the acid-base equilibrium of adsorbed hexahistidine is shifted significantly increasing the degree of charge of the residues, as compared to the bulk solution. Such shift depends critically on the conditions of the environment at the nanoscale. At the same time, the degree of dissociation of the network becomes that of the isolated acid-group in a dilute solution, which means that the network is considerably more charged than when there is no adsorbate molecules. This work provides fundamental information on the physical chemistry behind the adsorption behavior and the response of the hydrogel film. This information can be useful in designing new materials for the purification or separation/immobilization of histidine-tagged proteins.
Fil: Longo, Gabriel Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Olvera de la Cruz, Monica. Northwestern University; Estados Unidos
Fil: Szleifer, Igal. Northwestern University; Estados Unidos - Materia
-
Ph-Responsive Hydrogels
His-Tag
Adsorption Thermodynamics
Immobilized Metal Ion Affinity Chromatography
Molecular Modeling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/5131
Ver los metadatos del registro completo
id |
CONICETDig_053614cc4491508f355470cf373e2938 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/5131 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel NanofilmsLongo, Gabriel SebastianOlvera de la Cruz, MonicaSzleifer, IgalPh-Responsive HydrogelsHis-TagAdsorption ThermodynamicsImmobilized Metal Ion Affinity ChromatographyMolecular Modelinghttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We present a molecular theory to study the adsorption of different species within pH-sensitive hydrogel nanofilms. The theoretical framework allows for a molecular-level description of all the components of the system, and it explicitly accounts for the acid-base equilibrium. We concentrate in the adsorption of hexahistidine, one of the most widely used tags in bio-related systems, particularly in chromatography of proteins. The adsorption of hexahistidine within a grafted polyacid hydrogel film shows a non-monotonic dependence on the solution pH. Depending on the salt concentration, the density of the polymer network, and the bulk concentration of peptide, substantial adsorption is predicted in the intermediate pH range where both the network and the amino acids are charged. To enhance the electrostatic attractions, the acid-base equilibrium of adsorbed hexahistidine is shifted significantly increasing the degree of charge of the residues, as compared to the bulk solution. Such shift depends critically on the conditions of the environment at the nanoscale. At the same time, the degree of dissociation of the network becomes that of the isolated acid-group in a dilute solution, which means that the network is considerably more charged than when there is no adsorbate molecules. This work provides fundamental information on the physical chemistry behind the adsorption behavior and the response of the hydrogel film. This information can be useful in designing new materials for the purification or separation/immobilization of histidine-tagged proteins.Fil: Longo, Gabriel Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Olvera de la Cruz, Monica. Northwestern University; Estados UnidosFil: Szleifer, Igal. Northwestern University; Estados UnidosAmerican Chemical Society2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5131Longo, Gabriel Sebastian; Olvera de la Cruz, Monica; Szleifer, Igal; Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms; American Chemical Society; Langmuir; 30; 50; 12-2014; 15335-153440743-7463enginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/la5040382info:eu-repo/semantics/altIdentifier/doi/10.1021/la5040382info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:22:18Zoai:ri.conicet.gov.ar:11336/5131instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:22:18.913CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms |
title |
Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms |
spellingShingle |
Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms Longo, Gabriel Sebastian Ph-Responsive Hydrogels His-Tag Adsorption Thermodynamics Immobilized Metal Ion Affinity Chromatography Molecular Modeling |
title_short |
Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms |
title_full |
Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms |
title_fullStr |
Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms |
title_full_unstemmed |
Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms |
title_sort |
Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms |
dc.creator.none.fl_str_mv |
Longo, Gabriel Sebastian Olvera de la Cruz, Monica Szleifer, Igal |
author |
Longo, Gabriel Sebastian |
author_facet |
Longo, Gabriel Sebastian Olvera de la Cruz, Monica Szleifer, Igal |
author_role |
author |
author2 |
Olvera de la Cruz, Monica Szleifer, Igal |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ph-Responsive Hydrogels His-Tag Adsorption Thermodynamics Immobilized Metal Ion Affinity Chromatography Molecular Modeling |
topic |
Ph-Responsive Hydrogels His-Tag Adsorption Thermodynamics Immobilized Metal Ion Affinity Chromatography Molecular Modeling |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a molecular theory to study the adsorption of different species within pH-sensitive hydrogel nanofilms. The theoretical framework allows for a molecular-level description of all the components of the system, and it explicitly accounts for the acid-base equilibrium. We concentrate in the adsorption of hexahistidine, one of the most widely used tags in bio-related systems, particularly in chromatography of proteins. The adsorption of hexahistidine within a grafted polyacid hydrogel film shows a non-monotonic dependence on the solution pH. Depending on the salt concentration, the density of the polymer network, and the bulk concentration of peptide, substantial adsorption is predicted in the intermediate pH range where both the network and the amino acids are charged. To enhance the electrostatic attractions, the acid-base equilibrium of adsorbed hexahistidine is shifted significantly increasing the degree of charge of the residues, as compared to the bulk solution. Such shift depends critically on the conditions of the environment at the nanoscale. At the same time, the degree of dissociation of the network becomes that of the isolated acid-group in a dilute solution, which means that the network is considerably more charged than when there is no adsorbate molecules. This work provides fundamental information on the physical chemistry behind the adsorption behavior and the response of the hydrogel film. This information can be useful in designing new materials for the purification or separation/immobilization of histidine-tagged proteins. Fil: Longo, Gabriel Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina Fil: Olvera de la Cruz, Monica. Northwestern University; Estados Unidos Fil: Szleifer, Igal. Northwestern University; Estados Unidos |
description |
We present a molecular theory to study the adsorption of different species within pH-sensitive hydrogel nanofilms. The theoretical framework allows for a molecular-level description of all the components of the system, and it explicitly accounts for the acid-base equilibrium. We concentrate in the adsorption of hexahistidine, one of the most widely used tags in bio-related systems, particularly in chromatography of proteins. The adsorption of hexahistidine within a grafted polyacid hydrogel film shows a non-monotonic dependence on the solution pH. Depending on the salt concentration, the density of the polymer network, and the bulk concentration of peptide, substantial adsorption is predicted in the intermediate pH range where both the network and the amino acids are charged. To enhance the electrostatic attractions, the acid-base equilibrium of adsorbed hexahistidine is shifted significantly increasing the degree of charge of the residues, as compared to the bulk solution. Such shift depends critically on the conditions of the environment at the nanoscale. At the same time, the degree of dissociation of the network becomes that of the isolated acid-group in a dilute solution, which means that the network is considerably more charged than when there is no adsorbate molecules. This work provides fundamental information on the physical chemistry behind the adsorption behavior and the response of the hydrogel film. This information can be useful in designing new materials for the purification or separation/immobilization of histidine-tagged proteins. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/5131 Longo, Gabriel Sebastian; Olvera de la Cruz, Monica; Szleifer, Igal; Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms; American Chemical Society; Langmuir; 30; 50; 12-2014; 15335-15344 0743-7463 |
url |
http://hdl.handle.net/11336/5131 |
identifier_str_mv |
Longo, Gabriel Sebastian; Olvera de la Cruz, Monica; Szleifer, Igal; Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms; American Chemical Society; Langmuir; 30; 50; 12-2014; 15335-15344 0743-7463 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/la5040382 info:eu-repo/semantics/altIdentifier/doi/10.1021/la5040382 info:eu-repo/semantics/altIdentifier/doi/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082621535158272 |
score |
13.22299 |