Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms

Autores
Longo, Gabriel Sebastian; Olvera de la Cruz, Monica; Szleifer, Igal
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a molecular theory to study the adsorption of different species within pH-sensitive hydrogel nanofilms. The theoretical framework allows for a molecular-level description of all the components of the system, and it explicitly accounts for the acid-base equilibrium. We concentrate in the adsorption of hexahistidine, one of the most widely used tags in bio-related systems, particularly in chromatography of proteins. The adsorption of hexahistidine within a grafted polyacid hydrogel film shows a non-monotonic dependence on the solution pH. Depending on the salt concentration, the density of the polymer network, and the bulk concentration of peptide, substantial adsorption is predicted in the intermediate pH range where both the network and the amino acids are charged. To enhance the electrostatic attractions, the acid-base equilibrium of adsorbed hexahistidine is shifted significantly increasing the degree of charge of the residues, as compared to the bulk solution. Such shift depends critically on the conditions of the environment at the nanoscale. At the same time, the degree of dissociation of the network becomes that of the isolated acid-group in a dilute solution, which means that the network is considerably more charged than when there is no adsorbate molecules. This work provides fundamental information on the physical chemistry behind the adsorption behavior and the response of the hydrogel film. This information can be useful in designing new materials for the purification or separation/immobilization of histidine-tagged proteins.
Fil: Longo, Gabriel Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Olvera de la Cruz, Monica. Northwestern University; Estados Unidos
Fil: Szleifer, Igal. Northwestern University; Estados Unidos
Materia
Ph-Responsive Hydrogels
His-Tag
Adsorption Thermodynamics
Immobilized Metal Ion Affinity Chromatography
Molecular Modeling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5131

id CONICETDig_053614cc4491508f355470cf373e2938
oai_identifier_str oai:ri.conicet.gov.ar:11336/5131
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel NanofilmsLongo, Gabriel SebastianOlvera de la Cruz, MonicaSzleifer, IgalPh-Responsive HydrogelsHis-TagAdsorption ThermodynamicsImmobilized Metal Ion Affinity ChromatographyMolecular Modelinghttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We present a molecular theory to study the adsorption of different species within pH-sensitive hydrogel nanofilms. The theoretical framework allows for a molecular-level description of all the components of the system, and it explicitly accounts for the acid-base equilibrium. We concentrate in the adsorption of hexahistidine, one of the most widely used tags in bio-related systems, particularly in chromatography of proteins. The adsorption of hexahistidine within a grafted polyacid hydrogel film shows a non-monotonic dependence on the solution pH. Depending on the salt concentration, the density of the polymer network, and the bulk concentration of peptide, substantial adsorption is predicted in the intermediate pH range where both the network and the amino acids are charged. To enhance the electrostatic attractions, the acid-base equilibrium of adsorbed hexahistidine is shifted significantly increasing the degree of charge of the residues, as compared to the bulk solution. Such shift depends critically on the conditions of the environment at the nanoscale. At the same time, the degree of dissociation of the network becomes that of the isolated acid-group in a dilute solution, which means that the network is considerably more charged than when there is no adsorbate molecules. This work provides fundamental information on the physical chemistry behind the adsorption behavior and the response of the hydrogel film. This information can be useful in designing new materials for the purification or separation/immobilization of histidine-tagged proteins.Fil: Longo, Gabriel Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Olvera de la Cruz, Monica. Northwestern University; Estados UnidosFil: Szleifer, Igal. Northwestern University; Estados UnidosAmerican Chemical Society2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5131Longo, Gabriel Sebastian; Olvera de la Cruz, Monica; Szleifer, Igal; Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms; American Chemical Society; Langmuir; 30; 50; 12-2014; 15335-153440743-7463enginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/la5040382info:eu-repo/semantics/altIdentifier/doi/10.1021/la5040382info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:22:18Zoai:ri.conicet.gov.ar:11336/5131instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:22:18.913CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms
title Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms
spellingShingle Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms
Longo, Gabriel Sebastian
Ph-Responsive Hydrogels
His-Tag
Adsorption Thermodynamics
Immobilized Metal Ion Affinity Chromatography
Molecular Modeling
title_short Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms
title_full Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms
title_fullStr Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms
title_full_unstemmed Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms
title_sort Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms
dc.creator.none.fl_str_mv Longo, Gabriel Sebastian
Olvera de la Cruz, Monica
Szleifer, Igal
author Longo, Gabriel Sebastian
author_facet Longo, Gabriel Sebastian
Olvera de la Cruz, Monica
Szleifer, Igal
author_role author
author2 Olvera de la Cruz, Monica
Szleifer, Igal
author2_role author
author
dc.subject.none.fl_str_mv Ph-Responsive Hydrogels
His-Tag
Adsorption Thermodynamics
Immobilized Metal Ion Affinity Chromatography
Molecular Modeling
topic Ph-Responsive Hydrogels
His-Tag
Adsorption Thermodynamics
Immobilized Metal Ion Affinity Chromatography
Molecular Modeling
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a molecular theory to study the adsorption of different species within pH-sensitive hydrogel nanofilms. The theoretical framework allows for a molecular-level description of all the components of the system, and it explicitly accounts for the acid-base equilibrium. We concentrate in the adsorption of hexahistidine, one of the most widely used tags in bio-related systems, particularly in chromatography of proteins. The adsorption of hexahistidine within a grafted polyacid hydrogel film shows a non-monotonic dependence on the solution pH. Depending on the salt concentration, the density of the polymer network, and the bulk concentration of peptide, substantial adsorption is predicted in the intermediate pH range where both the network and the amino acids are charged. To enhance the electrostatic attractions, the acid-base equilibrium of adsorbed hexahistidine is shifted significantly increasing the degree of charge of the residues, as compared to the bulk solution. Such shift depends critically on the conditions of the environment at the nanoscale. At the same time, the degree of dissociation of the network becomes that of the isolated acid-group in a dilute solution, which means that the network is considerably more charged than when there is no adsorbate molecules. This work provides fundamental information on the physical chemistry behind the adsorption behavior and the response of the hydrogel film. This information can be useful in designing new materials for the purification or separation/immobilization of histidine-tagged proteins.
Fil: Longo, Gabriel Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Olvera de la Cruz, Monica. Northwestern University; Estados Unidos
Fil: Szleifer, Igal. Northwestern University; Estados Unidos
description We present a molecular theory to study the adsorption of different species within pH-sensitive hydrogel nanofilms. The theoretical framework allows for a molecular-level description of all the components of the system, and it explicitly accounts for the acid-base equilibrium. We concentrate in the adsorption of hexahistidine, one of the most widely used tags in bio-related systems, particularly in chromatography of proteins. The adsorption of hexahistidine within a grafted polyacid hydrogel film shows a non-monotonic dependence on the solution pH. Depending on the salt concentration, the density of the polymer network, and the bulk concentration of peptide, substantial adsorption is predicted in the intermediate pH range where both the network and the amino acids are charged. To enhance the electrostatic attractions, the acid-base equilibrium of adsorbed hexahistidine is shifted significantly increasing the degree of charge of the residues, as compared to the bulk solution. Such shift depends critically on the conditions of the environment at the nanoscale. At the same time, the degree of dissociation of the network becomes that of the isolated acid-group in a dilute solution, which means that the network is considerably more charged than when there is no adsorbate molecules. This work provides fundamental information on the physical chemistry behind the adsorption behavior and the response of the hydrogel film. This information can be useful in designing new materials for the purification or separation/immobilization of histidine-tagged proteins.
publishDate 2014
dc.date.none.fl_str_mv 2014-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5131
Longo, Gabriel Sebastian; Olvera de la Cruz, Monica; Szleifer, Igal; Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms; American Chemical Society; Langmuir; 30; 50; 12-2014; 15335-15344
0743-7463
url http://hdl.handle.net/11336/5131
identifier_str_mv Longo, Gabriel Sebastian; Olvera de la Cruz, Monica; Szleifer, Igal; Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms; American Chemical Society; Langmuir; 30; 50; 12-2014; 15335-15344
0743-7463
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/la5040382
info:eu-repo/semantics/altIdentifier/doi/10.1021/la5040382
info:eu-repo/semantics/altIdentifier/doi/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082621535158272
score 13.22299