Energy and angular distribution of electrons in ionization of He and Ne by 6-MeV/u bare carbon ions: Comparison with continuum-distorted-wave eikonal-initial-state calculations in...
- Autores
- Biswas, Shubhadeep; Misra, D.; Monti, Juan Manuel; Tachino, Carmen Alejandra; Rivarola, Roberto Daniel; Tribedi, L. C.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We have measured the absolute double-differential cross sections (DDCS) for electron emission in ionization of He and Ne atoms under the impact of 6-MeV/u C6+ ions. Data were collected between 1 and 500 eV for He, while for Ne this range was extended up to 1000 eV. The angular ranges covered in the experiment are 30∘ to 150∘ and 20∘ to 160∘ for He and Ne, respectively. The DDCS spectra are compared with the prior and the post forms of the state-of-the-art continuum-distorted-wave eikonal-initial-state model. Both the theoretical models show very good agreement with the energy and angular distributions of the DDCS in the case of He. For Ne, at low energies both are going together and matching very well with the data. In the high-energy region, at extreme forward and backward angles, although both the forms are underestimating the experimental data to some extent, the prior form shows much better agreement compared to the post form. This post-prior discrepancy is attributed to the influence of dynamic screening, on the ionized one, produced by the electrons remaining in the target. The single differential cross sections (SDCS) in emission angle (dσdΩe) and electron energy (dσdεe) are deduced by integrating the electron DDCS spectra. While excellent agreement is obtained for the dσdεe spectrum, the dσdΩe provides a further sensitive test to the adequacy of the theoretical model employed. The total cross section obtained from the SDCS spectra is about 11% higher than the prior model for He and about 6% lower for Ne. To get the quantitative picture of the two-center effect, the forward-backward angular asymmetry parameter has been deduced as a function of velocity of the ejected electrons. For both the targets, it is very well reproduced by both the forms of the theory. For the Ne target, K-LL Auger angular distribution has also been studied, which shows small asymmetry caused by multiple vacancies in the L shell along with the K-shell vacancy.
Fil: Biswas, Shubhadeep. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; España
Fil: Misra, D.. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; España
Fil: Monti, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Fil: Tachino, Carmen Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Fil: Rivarola, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Fil: Tribedi, L. C.. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; España - Materia
-
Energy
Angular
Distribution
Ionization
Distorted-Wave
Bare-Ions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6199
Ver los metadatos del registro completo
id |
CONICETDig_05028c220b4fb4be53479545c9e10c57 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6199 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Energy and angular distribution of electrons in ionization of He and Ne by 6-MeV/u bare carbon ions: Comparison with continuum-distorted-wave eikonal-initial-state calculations in prior and post formsBiswas, ShubhadeepMisra, D.Monti, Juan ManuelTachino, Carmen AlejandraRivarola, Roberto DanielTribedi, L. C.EnergyAngularDistributionIonizationDistorted-WaveBare-Ionshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We have measured the absolute double-differential cross sections (DDCS) for electron emission in ionization of He and Ne atoms under the impact of 6-MeV/u C6+ ions. Data were collected between 1 and 500 eV for He, while for Ne this range was extended up to 1000 eV. The angular ranges covered in the experiment are 30∘ to 150∘ and 20∘ to 160∘ for He and Ne, respectively. The DDCS spectra are compared with the prior and the post forms of the state-of-the-art continuum-distorted-wave eikonal-initial-state model. Both the theoretical models show very good agreement with the energy and angular distributions of the DDCS in the case of He. For Ne, at low energies both are going together and matching very well with the data. In the high-energy region, at extreme forward and backward angles, although both the forms are underestimating the experimental data to some extent, the prior form shows much better agreement compared to the post form. This post-prior discrepancy is attributed to the influence of dynamic screening, on the ionized one, produced by the electrons remaining in the target. The single differential cross sections (SDCS) in emission angle (dσdΩe) and electron energy (dσdεe) are deduced by integrating the electron DDCS spectra. While excellent agreement is obtained for the dσdεe spectrum, the dσdΩe provides a further sensitive test to the adequacy of the theoretical model employed. The total cross section obtained from the SDCS spectra is about 11% higher than the prior model for He and about 6% lower for Ne. To get the quantitative picture of the two-center effect, the forward-backward angular asymmetry parameter has been deduced as a function of velocity of the ejected electrons. For both the targets, it is very well reproduced by both the forms of the theory. For the Ne target, K-LL Auger angular distribution has also been studied, which shows small asymmetry caused by multiple vacancies in the L shell along with the K-shell vacancy.Fil: Biswas, Shubhadeep. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; EspañaFil: Misra, D.. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; EspañaFil: Monti, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Tachino, Carmen Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Rivarola, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Tribedi, L. C.. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; EspañaAmerican Physical Society2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6199Biswas, Shubhadeep; Misra, D.; Monti, Juan Manuel; Tachino, Carmen Alejandra; Rivarola, Roberto Daniel; et al.; Energy and angular distribution of electrons in ionization of He and Ne by 6-MeV/u bare carbon ions: Comparison with continuum-distorted-wave eikonal-initial-state calculations in prior and post forms; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 90; 5; 11-2014; 52714-527141050-2947enginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.052714info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.90.052714info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:03Zoai:ri.conicet.gov.ar:11336/6199instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:03.583CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Energy and angular distribution of electrons in ionization of He and Ne by 6-MeV/u bare carbon ions: Comparison with continuum-distorted-wave eikonal-initial-state calculations in prior and post forms |
title |
Energy and angular distribution of electrons in ionization of He and Ne by 6-MeV/u bare carbon ions: Comparison with continuum-distorted-wave eikonal-initial-state calculations in prior and post forms |
spellingShingle |
Energy and angular distribution of electrons in ionization of He and Ne by 6-MeV/u bare carbon ions: Comparison with continuum-distorted-wave eikonal-initial-state calculations in prior and post forms Biswas, Shubhadeep Energy Angular Distribution Ionization Distorted-Wave Bare-Ions |
title_short |
Energy and angular distribution of electrons in ionization of He and Ne by 6-MeV/u bare carbon ions: Comparison with continuum-distorted-wave eikonal-initial-state calculations in prior and post forms |
title_full |
Energy and angular distribution of electrons in ionization of He and Ne by 6-MeV/u bare carbon ions: Comparison with continuum-distorted-wave eikonal-initial-state calculations in prior and post forms |
title_fullStr |
Energy and angular distribution of electrons in ionization of He and Ne by 6-MeV/u bare carbon ions: Comparison with continuum-distorted-wave eikonal-initial-state calculations in prior and post forms |
title_full_unstemmed |
Energy and angular distribution of electrons in ionization of He and Ne by 6-MeV/u bare carbon ions: Comparison with continuum-distorted-wave eikonal-initial-state calculations in prior and post forms |
title_sort |
Energy and angular distribution of electrons in ionization of He and Ne by 6-MeV/u bare carbon ions: Comparison with continuum-distorted-wave eikonal-initial-state calculations in prior and post forms |
dc.creator.none.fl_str_mv |
Biswas, Shubhadeep Misra, D. Monti, Juan Manuel Tachino, Carmen Alejandra Rivarola, Roberto Daniel Tribedi, L. C. |
author |
Biswas, Shubhadeep |
author_facet |
Biswas, Shubhadeep Misra, D. Monti, Juan Manuel Tachino, Carmen Alejandra Rivarola, Roberto Daniel Tribedi, L. C. |
author_role |
author |
author2 |
Misra, D. Monti, Juan Manuel Tachino, Carmen Alejandra Rivarola, Roberto Daniel Tribedi, L. C. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Energy Angular Distribution Ionization Distorted-Wave Bare-Ions |
topic |
Energy Angular Distribution Ionization Distorted-Wave Bare-Ions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We have measured the absolute double-differential cross sections (DDCS) for electron emission in ionization of He and Ne atoms under the impact of 6-MeV/u C6+ ions. Data were collected between 1 and 500 eV for He, while for Ne this range was extended up to 1000 eV. The angular ranges covered in the experiment are 30∘ to 150∘ and 20∘ to 160∘ for He and Ne, respectively. The DDCS spectra are compared with the prior and the post forms of the state-of-the-art continuum-distorted-wave eikonal-initial-state model. Both the theoretical models show very good agreement with the energy and angular distributions of the DDCS in the case of He. For Ne, at low energies both are going together and matching very well with the data. In the high-energy region, at extreme forward and backward angles, although both the forms are underestimating the experimental data to some extent, the prior form shows much better agreement compared to the post form. This post-prior discrepancy is attributed to the influence of dynamic screening, on the ionized one, produced by the electrons remaining in the target. The single differential cross sections (SDCS) in emission angle (dσdΩe) and electron energy (dσdεe) are deduced by integrating the electron DDCS spectra. While excellent agreement is obtained for the dσdεe spectrum, the dσdΩe provides a further sensitive test to the adequacy of the theoretical model employed. The total cross section obtained from the SDCS spectra is about 11% higher than the prior model for He and about 6% lower for Ne. To get the quantitative picture of the two-center effect, the forward-backward angular asymmetry parameter has been deduced as a function of velocity of the ejected electrons. For both the targets, it is very well reproduced by both the forms of the theory. For the Ne target, K-LL Auger angular distribution has also been studied, which shows small asymmetry caused by multiple vacancies in the L shell along with the K-shell vacancy. Fil: Biswas, Shubhadeep. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; España Fil: Misra, D.. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; España Fil: Monti, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina Fil: Tachino, Carmen Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina Fil: Rivarola, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina Fil: Tribedi, L. C.. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; España |
description |
We have measured the absolute double-differential cross sections (DDCS) for electron emission in ionization of He and Ne atoms under the impact of 6-MeV/u C6+ ions. Data were collected between 1 and 500 eV for He, while for Ne this range was extended up to 1000 eV. The angular ranges covered in the experiment are 30∘ to 150∘ and 20∘ to 160∘ for He and Ne, respectively. The DDCS spectra are compared with the prior and the post forms of the state-of-the-art continuum-distorted-wave eikonal-initial-state model. Both the theoretical models show very good agreement with the energy and angular distributions of the DDCS in the case of He. For Ne, at low energies both are going together and matching very well with the data. In the high-energy region, at extreme forward and backward angles, although both the forms are underestimating the experimental data to some extent, the prior form shows much better agreement compared to the post form. This post-prior discrepancy is attributed to the influence of dynamic screening, on the ionized one, produced by the electrons remaining in the target. The single differential cross sections (SDCS) in emission angle (dσdΩe) and electron energy (dσdεe) are deduced by integrating the electron DDCS spectra. While excellent agreement is obtained for the dσdεe spectrum, the dσdΩe provides a further sensitive test to the adequacy of the theoretical model employed. The total cross section obtained from the SDCS spectra is about 11% higher than the prior model for He and about 6% lower for Ne. To get the quantitative picture of the two-center effect, the forward-backward angular asymmetry parameter has been deduced as a function of velocity of the ejected electrons. For both the targets, it is very well reproduced by both the forms of the theory. For the Ne target, K-LL Auger angular distribution has also been studied, which shows small asymmetry caused by multiple vacancies in the L shell along with the K-shell vacancy. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6199 Biswas, Shubhadeep; Misra, D.; Monti, Juan Manuel; Tachino, Carmen Alejandra; Rivarola, Roberto Daniel; et al.; Energy and angular distribution of electrons in ionization of He and Ne by 6-MeV/u bare carbon ions: Comparison with continuum-distorted-wave eikonal-initial-state calculations in prior and post forms; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 90; 5; 11-2014; 52714-52714 1050-2947 |
url |
http://hdl.handle.net/11336/6199 |
identifier_str_mv |
Biswas, Shubhadeep; Misra, D.; Monti, Juan Manuel; Tachino, Carmen Alejandra; Rivarola, Roberto Daniel; et al.; Energy and angular distribution of electrons in ionization of He and Ne by 6-MeV/u bare carbon ions: Comparison with continuum-distorted-wave eikonal-initial-state calculations in prior and post forms; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 90; 5; 11-2014; 52714-52714 1050-2947 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.052714 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.90.052714 info:eu-repo/semantics/altIdentifier/doi/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269381129666560 |
score |
13.13397 |