Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness
- Autores
- Cybulski, Larisa Estefania; Ballering, Joost; Moussatova, Anastassiia; Inda, María Eugenia; Vázquez, Daniela Belén; Wassenaar, Tsjerk A.; de Mendoza, Diego; Tieleman, D. Peter; Killian, J. Antoinette
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- DesK is a bacterial thermosensor protein involved in maintaining membrane fluidity in response to changes in environmental temperature. Most likely, the protein is activated by changes in membrane thickness, but the molecular mechanism of sensing and signaling is still poorly understood. Here we aimed to elucidate the mode of action of DesK by studying the so-called "minimal sensor DesK" (MS-DesK), in which sensing and signaling are captured in a single transmembrane segment. This simplified version of the sensor allows investigation of membrane thickness-dependent protein-lipid interactions simply by using synthetic peptides, corresponding to the membrane-spanning parts of functional and nonfunctional mutants of MS-DesK incorporated in lipid bilayers with varying thicknesses. The lipid-dependent behavior of the peptides was investigated by circular dichroism, tryptophan fluorescence, and molecular modeling. These experiments were complemented with in vivo functional studies on MS-DesK mutants. Based on the results, we constructed a model that suggests a new mechanism for sensing in which the protein is present as a dimer and responds to an increase in bilayer thickness by membrane incorporation of a C-terminal hydrophilic motif. This results in exposure of three serines on the same side of the transmembrane helices of MS-DesK, triggering a switching of the dimerization interface to allow the formation of a serine zipper. The final result is activation of the kinase state of MS-DesK.
Fil: Cybulski, Larisa Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmaceuticas. Departamento de Microbiología; Argentina
Fil: Ballering, Joost. University of Utrecht; Países Bajos
Fil: Moussatova, Anastassiia. University of Calgary,; Canadá
Fil: Inda, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmaceuticas. Departamento de Microbiología; Argentina
Fil: Vázquez, Daniela Belén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmaceuticas. Departamento de Microbiología; Argentina
Fil: Wassenaar, Tsjerk A.. University of Erlangen-Nürnberg; Alemania
Fil: de Mendoza, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Tieleman, D. Peter. University of Calgary,; Canadá
Fil: Killian, J. Antoinette. University of Utrecht; Países Bajos - Materia
-
HELIX-HELIX INTERACTION|
LIPID-PROTEIN INTERACTION|
THERMOSENSING|
TRANSMEMBRANE HELIX DIMERIZATION
TWO-COMPONENT SYSTEM| - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/49914
Ver los metadatos del registro completo
id |
CONICETDig_04af2fc66f215627637e6d1aa4678a8e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/49914 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thicknessCybulski, Larisa EstefaniaBallering, JoostMoussatova, AnastassiiaInda, María EugeniaVázquez, Daniela BelénWassenaar, Tsjerk A.de Mendoza, DiegoTieleman, D. PeterKillian, J. AntoinetteHELIX-HELIX INTERACTION|LIPID-PROTEIN INTERACTION|THERMOSENSING|TRANSMEMBRANE HELIX DIMERIZATIONTWO-COMPONENT SYSTEM|https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1DesK is a bacterial thermosensor protein involved in maintaining membrane fluidity in response to changes in environmental temperature. Most likely, the protein is activated by changes in membrane thickness, but the molecular mechanism of sensing and signaling is still poorly understood. Here we aimed to elucidate the mode of action of DesK by studying the so-called "minimal sensor DesK" (MS-DesK), in which sensing and signaling are captured in a single transmembrane segment. This simplified version of the sensor allows investigation of membrane thickness-dependent protein-lipid interactions simply by using synthetic peptides, corresponding to the membrane-spanning parts of functional and nonfunctional mutants of MS-DesK incorporated in lipid bilayers with varying thicknesses. The lipid-dependent behavior of the peptides was investigated by circular dichroism, tryptophan fluorescence, and molecular modeling. These experiments were complemented with in vivo functional studies on MS-DesK mutants. Based on the results, we constructed a model that suggests a new mechanism for sensing in which the protein is present as a dimer and responds to an increase in bilayer thickness by membrane incorporation of a C-terminal hydrophilic motif. This results in exposure of three serines on the same side of the transmembrane helices of MS-DesK, triggering a switching of the dimerization interface to allow the formation of a serine zipper. The final result is activation of the kinase state of MS-DesK.Fil: Cybulski, Larisa Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmaceuticas. Departamento de Microbiología; ArgentinaFil: Ballering, Joost. University of Utrecht; Países BajosFil: Moussatova, Anastassiia. University of Calgary,; CanadáFil: Inda, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmaceuticas. Departamento de Microbiología; ArgentinaFil: Vázquez, Daniela Belén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmaceuticas. Departamento de Microbiología; ArgentinaFil: Wassenaar, Tsjerk A.. University of Erlangen-Nürnberg; AlemaniaFil: de Mendoza, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Tieleman, D. Peter. University of Calgary,; CanadáFil: Killian, J. Antoinette. University of Utrecht; Países BajosNational Academy of Sciences2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/49914Cybulski, Larisa Estefania; Ballering, Joost; Moussatova, Anastassiia; Inda, María Eugenia; Vázquez, Daniela Belén; et al.; Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 112; 20; 5-2015; 6353-63580027-8424CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1422446112info:eu-repo/semantics/altIdentifier/url/http://www.pnas.org/content/112/20/6353info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:17Zoai:ri.conicet.gov.ar:11336/49914instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:17.485CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness |
title |
Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness |
spellingShingle |
Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness Cybulski, Larisa Estefania HELIX-HELIX INTERACTION| LIPID-PROTEIN INTERACTION| THERMOSENSING| TRANSMEMBRANE HELIX DIMERIZATION TWO-COMPONENT SYSTEM| |
title_short |
Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness |
title_full |
Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness |
title_fullStr |
Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness |
title_full_unstemmed |
Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness |
title_sort |
Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness |
dc.creator.none.fl_str_mv |
Cybulski, Larisa Estefania Ballering, Joost Moussatova, Anastassiia Inda, María Eugenia Vázquez, Daniela Belén Wassenaar, Tsjerk A. de Mendoza, Diego Tieleman, D. Peter Killian, J. Antoinette |
author |
Cybulski, Larisa Estefania |
author_facet |
Cybulski, Larisa Estefania Ballering, Joost Moussatova, Anastassiia Inda, María Eugenia Vázquez, Daniela Belén Wassenaar, Tsjerk A. de Mendoza, Diego Tieleman, D. Peter Killian, J. Antoinette |
author_role |
author |
author2 |
Ballering, Joost Moussatova, Anastassiia Inda, María Eugenia Vázquez, Daniela Belén Wassenaar, Tsjerk A. de Mendoza, Diego Tieleman, D. Peter Killian, J. Antoinette |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
HELIX-HELIX INTERACTION| LIPID-PROTEIN INTERACTION| THERMOSENSING| TRANSMEMBRANE HELIX DIMERIZATION TWO-COMPONENT SYSTEM| |
topic |
HELIX-HELIX INTERACTION| LIPID-PROTEIN INTERACTION| THERMOSENSING| TRANSMEMBRANE HELIX DIMERIZATION TWO-COMPONENT SYSTEM| |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
DesK is a bacterial thermosensor protein involved in maintaining membrane fluidity in response to changes in environmental temperature. Most likely, the protein is activated by changes in membrane thickness, but the molecular mechanism of sensing and signaling is still poorly understood. Here we aimed to elucidate the mode of action of DesK by studying the so-called "minimal sensor DesK" (MS-DesK), in which sensing and signaling are captured in a single transmembrane segment. This simplified version of the sensor allows investigation of membrane thickness-dependent protein-lipid interactions simply by using synthetic peptides, corresponding to the membrane-spanning parts of functional and nonfunctional mutants of MS-DesK incorporated in lipid bilayers with varying thicknesses. The lipid-dependent behavior of the peptides was investigated by circular dichroism, tryptophan fluorescence, and molecular modeling. These experiments were complemented with in vivo functional studies on MS-DesK mutants. Based on the results, we constructed a model that suggests a new mechanism for sensing in which the protein is present as a dimer and responds to an increase in bilayer thickness by membrane incorporation of a C-terminal hydrophilic motif. This results in exposure of three serines on the same side of the transmembrane helices of MS-DesK, triggering a switching of the dimerization interface to allow the formation of a serine zipper. The final result is activation of the kinase state of MS-DesK. Fil: Cybulski, Larisa Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmaceuticas. Departamento de Microbiología; Argentina Fil: Ballering, Joost. University of Utrecht; Países Bajos Fil: Moussatova, Anastassiia. University of Calgary,; Canadá Fil: Inda, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmaceuticas. Departamento de Microbiología; Argentina Fil: Vázquez, Daniela Belén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmaceuticas. Departamento de Microbiología; Argentina Fil: Wassenaar, Tsjerk A.. University of Erlangen-Nürnberg; Alemania Fil: de Mendoza, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Tieleman, D. Peter. University of Calgary,; Canadá Fil: Killian, J. Antoinette. University of Utrecht; Países Bajos |
description |
DesK is a bacterial thermosensor protein involved in maintaining membrane fluidity in response to changes in environmental temperature. Most likely, the protein is activated by changes in membrane thickness, but the molecular mechanism of sensing and signaling is still poorly understood. Here we aimed to elucidate the mode of action of DesK by studying the so-called "minimal sensor DesK" (MS-DesK), in which sensing and signaling are captured in a single transmembrane segment. This simplified version of the sensor allows investigation of membrane thickness-dependent protein-lipid interactions simply by using synthetic peptides, corresponding to the membrane-spanning parts of functional and nonfunctional mutants of MS-DesK incorporated in lipid bilayers with varying thicknesses. The lipid-dependent behavior of the peptides was investigated by circular dichroism, tryptophan fluorescence, and molecular modeling. These experiments were complemented with in vivo functional studies on MS-DesK mutants. Based on the results, we constructed a model that suggests a new mechanism for sensing in which the protein is present as a dimer and responds to an increase in bilayer thickness by membrane incorporation of a C-terminal hydrophilic motif. This results in exposure of three serines on the same side of the transmembrane helices of MS-DesK, triggering a switching of the dimerization interface to allow the formation of a serine zipper. The final result is activation of the kinase state of MS-DesK. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/49914 Cybulski, Larisa Estefania; Ballering, Joost; Moussatova, Anastassiia; Inda, María Eugenia; Vázquez, Daniela Belén; et al.; Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 112; 20; 5-2015; 6353-6358 0027-8424 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/49914 |
identifier_str_mv |
Cybulski, Larisa Estefania; Ballering, Joost; Moussatova, Anastassiia; Inda, María Eugenia; Vázquez, Daniela Belén; et al.; Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 112; 20; 5-2015; 6353-6358 0027-8424 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1422446112 info:eu-repo/semantics/altIdentifier/url/http://www.pnas.org/content/112/20/6353 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
National Academy of Sciences |
publisher.none.fl_str_mv |
National Academy of Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614382812659712 |
score |
13.070432 |