Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus

Autores
Fama, Lucia Mercedes; Gañan Rojo, Piedad; Bernal, Celina Raquel; Goyanes, Silvia Nair
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nanocomposite materials based on a starch matrix reinforced with very small amounts of multi-walled carbon nanotubes (MWCNTs) (from 0.005 wt% to 0.055 wt%) were developed. The material's dynamic-mechanical and water vapor permeability properties were investigated. An increasing trend of storage modulus (E′) and a decreasing trend of water vapor permeability (WVP) with filler content were observed at room temperature. For the composite with 0.055 wt% of filler, E′ value was about 100% higher and WVP value was almost 43% lower than the corresponding matrix values. MWCNTs were wrapped in an aqueous solution of a starch-iodine complex before their incorporation into the matrix, obtaining exceptionally well-dispersed nanotubes and optimizing interfacial adhesion. This excellent filler dispersion leads to the development of an important contact surface area with the matrix material, producing remarkable changes in the starch-rich phase glass transition temperature even in composites with very low filler contents. This transition is shifted towards higher temperatures with increasing content of nanotubes. So at room temperature, some composites are in the rubber zone while others, in the transition zone. Therefore, this change in the material glass transition temperature can be taken as responsible for the important improvements obtained in the composites WVP and E′ values for carbon nanotubes content as low as 0.05 wt%.
Fil: Fama, Lucia Mercedes. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Fisica; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Grupo de Materiales Avanzados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Gañan Rojo, Piedad. Universidad Pontificia Bolivariana; Colombia
Fil: Bernal, Celina Raquel. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Grupo de Materiales Avanzados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Goyanes, Silvia Nair. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
DYNAMIC MECHANICAL PROPERTIES
STARCH-IODINE COMPLEX
STARCH-MWCNTS NANOCOMPOSITES
WATER VAPOR PERMEABILITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14737

id CONICETDig_03f47f28d145cc0841c105a6506c3cac
oai_identifier_str oai:ri.conicet.gov.ar:11336/14737
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulusFama, Lucia MercedesGañan Rojo, PiedadBernal, Celina RaquelGoyanes, Silvia NairDYNAMIC MECHANICAL PROPERTIESSTARCH-IODINE COMPLEXSTARCH-MWCNTS NANOCOMPOSITESWATER VAPOR PERMEABILITYhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Nanocomposite materials based on a starch matrix reinforced with very small amounts of multi-walled carbon nanotubes (MWCNTs) (from 0.005 wt% to 0.055 wt%) were developed. The material's dynamic-mechanical and water vapor permeability properties were investigated. An increasing trend of storage modulus (E′) and a decreasing trend of water vapor permeability (WVP) with filler content were observed at room temperature. For the composite with 0.055 wt% of filler, E′ value was about 100% higher and WVP value was almost 43% lower than the corresponding matrix values. MWCNTs were wrapped in an aqueous solution of a starch-iodine complex before their incorporation into the matrix, obtaining exceptionally well-dispersed nanotubes and optimizing interfacial adhesion. This excellent filler dispersion leads to the development of an important contact surface area with the matrix material, producing remarkable changes in the starch-rich phase glass transition temperature even in composites with very low filler contents. This transition is shifted towards higher temperatures with increasing content of nanotubes. So at room temperature, some composites are in the rubber zone while others, in the transition zone. Therefore, this change in the material glass transition temperature can be taken as responsible for the important improvements obtained in the composites WVP and E′ values for carbon nanotubes content as low as 0.05 wt%.Fil: Fama, Lucia Mercedes. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Fisica; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Grupo de Materiales Avanzados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Gañan Rojo, Piedad. Universidad Pontificia Bolivariana; ColombiaFil: Bernal, Celina Raquel. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Grupo de Materiales Avanzados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goyanes, Silvia Nair. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaElsevier2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14737Fama, Lucia Mercedes; Gañan Rojo, Piedad; Bernal, Celina Raquel; Goyanes, Silvia Nair; Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus; Elsevier; Carbohydrate Polymers; 87; 3; 2-2012; 1989-19930144-8617enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S014486171100912Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.carbpol.2011.10.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:26Zoai:ri.conicet.gov.ar:11336/14737instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:26.587CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus
title Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus
spellingShingle Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus
Fama, Lucia Mercedes
DYNAMIC MECHANICAL PROPERTIES
STARCH-IODINE COMPLEX
STARCH-MWCNTS NANOCOMPOSITES
WATER VAPOR PERMEABILITY
title_short Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus
title_full Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus
title_fullStr Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus
title_full_unstemmed Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus
title_sort Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus
dc.creator.none.fl_str_mv Fama, Lucia Mercedes
Gañan Rojo, Piedad
Bernal, Celina Raquel
Goyanes, Silvia Nair
author Fama, Lucia Mercedes
author_facet Fama, Lucia Mercedes
Gañan Rojo, Piedad
Bernal, Celina Raquel
Goyanes, Silvia Nair
author_role author
author2 Gañan Rojo, Piedad
Bernal, Celina Raquel
Goyanes, Silvia Nair
author2_role author
author
author
dc.subject.none.fl_str_mv DYNAMIC MECHANICAL PROPERTIES
STARCH-IODINE COMPLEX
STARCH-MWCNTS NANOCOMPOSITES
WATER VAPOR PERMEABILITY
topic DYNAMIC MECHANICAL PROPERTIES
STARCH-IODINE COMPLEX
STARCH-MWCNTS NANOCOMPOSITES
WATER VAPOR PERMEABILITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Nanocomposite materials based on a starch matrix reinforced with very small amounts of multi-walled carbon nanotubes (MWCNTs) (from 0.005 wt% to 0.055 wt%) were developed. The material's dynamic-mechanical and water vapor permeability properties were investigated. An increasing trend of storage modulus (E′) and a decreasing trend of water vapor permeability (WVP) with filler content were observed at room temperature. For the composite with 0.055 wt% of filler, E′ value was about 100% higher and WVP value was almost 43% lower than the corresponding matrix values. MWCNTs were wrapped in an aqueous solution of a starch-iodine complex before their incorporation into the matrix, obtaining exceptionally well-dispersed nanotubes and optimizing interfacial adhesion. This excellent filler dispersion leads to the development of an important contact surface area with the matrix material, producing remarkable changes in the starch-rich phase glass transition temperature even in composites with very low filler contents. This transition is shifted towards higher temperatures with increasing content of nanotubes. So at room temperature, some composites are in the rubber zone while others, in the transition zone. Therefore, this change in the material glass transition temperature can be taken as responsible for the important improvements obtained in the composites WVP and E′ values for carbon nanotubes content as low as 0.05 wt%.
Fil: Fama, Lucia Mercedes. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Fisica; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Grupo de Materiales Avanzados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Gañan Rojo, Piedad. Universidad Pontificia Bolivariana; Colombia
Fil: Bernal, Celina Raquel. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Grupo de Materiales Avanzados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Goyanes, Silvia Nair. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description Nanocomposite materials based on a starch matrix reinforced with very small amounts of multi-walled carbon nanotubes (MWCNTs) (from 0.005 wt% to 0.055 wt%) were developed. The material's dynamic-mechanical and water vapor permeability properties were investigated. An increasing trend of storage modulus (E′) and a decreasing trend of water vapor permeability (WVP) with filler content were observed at room temperature. For the composite with 0.055 wt% of filler, E′ value was about 100% higher and WVP value was almost 43% lower than the corresponding matrix values. MWCNTs were wrapped in an aqueous solution of a starch-iodine complex before their incorporation into the matrix, obtaining exceptionally well-dispersed nanotubes and optimizing interfacial adhesion. This excellent filler dispersion leads to the development of an important contact surface area with the matrix material, producing remarkable changes in the starch-rich phase glass transition temperature even in composites with very low filler contents. This transition is shifted towards higher temperatures with increasing content of nanotubes. So at room temperature, some composites are in the rubber zone while others, in the transition zone. Therefore, this change in the material glass transition temperature can be taken as responsible for the important improvements obtained in the composites WVP and E′ values for carbon nanotubes content as low as 0.05 wt%.
publishDate 2012
dc.date.none.fl_str_mv 2012-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14737
Fama, Lucia Mercedes; Gañan Rojo, Piedad; Bernal, Celina Raquel; Goyanes, Silvia Nair; Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus; Elsevier; Carbohydrate Polymers; 87; 3; 2-2012; 1989-1993
0144-8617
url http://hdl.handle.net/11336/14737
identifier_str_mv Fama, Lucia Mercedes; Gañan Rojo, Piedad; Bernal, Celina Raquel; Goyanes, Silvia Nair; Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus; Elsevier; Carbohydrate Polymers; 87; 3; 2-2012; 1989-1993
0144-8617
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S014486171100912X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.carbpol.2011.10.007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613850568065024
score 13.070432