Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets

Autores
Bher, Anibal Ricardo; Unalan, Ilke Uysal; Auras, Rafael; Rubino, Maria; Schvezov, Carlos Enrique
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Poly(lactic acid) (PLA) was reactively blended with thermoplastic cassava starch (TPCS) and functionalized with commercial graphene (GRH) nanoplatelets in a twin-screw extruder, and films were produced by cast-film extrusion. Reactive compatibilization between PLA and TPCS phases was reached by introducing maleic anhydride and a peroxide radical during the reactive blending extrusion process. Films with improved elongation at break and toughness for neat PLA and PLA-g-TPCS reactive blends were obtained by an addition of GRH nanoplatelets. Toughness of the PLA-g-TPCS-GRH was improved by ~900% and ~500% when compared to neat PLA and PLA-g-TPCS, respectively. Crack bridging was established as the primary mechanism responsible for the improvement in the mechanical properties of PLA and PLA-g-TPCS in the presence of the nanofiller due to the high aspect ratio of GRH. Scanning electron microscopy images showed a non-uniform distribution of GRH nanoplatelets in the matrix. Transmittance of the reactive blend films decreased due to the TPCS phase. Values obtained for the reactive blends showed ~20% transmittance. PLA-GRH and PLA-g-TPCS-GRH showed a reduction of the oxygen permeability coefficient with respect to PLA of around 35% and 50%, respectively. Thermal properties, molecular structure, surface roughness, XRD pattern, electrical resistivity, and color of the films were also evaluated. Biobased and compostable reactive blend films of PLA-g-TPCS compounded with GRH nanoplatelets could be suitable for food packaging and agricultural applications.
Fil: Bher, Anibal Ricardo. Universidad Nacional de San Martín; Argentina. Michigan State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina
Fil: Unalan, Ilke Uysal. Izmir Ekonomi Universitesi; Turquía. Michigan State University; Estados Unidos
Fil: Auras, Rafael. Michigan State University; Estados Unidos
Fil: Rubino, Maria. Michigan State University; Estados Unidos
Fil: Schvezov, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina
Materia
BIOBASED FILMS
GRAPHENE
NANOREINFORCEMENT
PLA
REACTIVE BLENDING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/87111

id CONICETDig_03a069fc07f99c75560373f7c5b20117
oai_identifier_str oai:ri.conicet.gov.ar:11336/87111
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplateletsBher, Anibal RicardoUnalan, Ilke UysalAuras, RafaelRubino, MariaSchvezov, Carlos EnriqueBIOBASED FILMSGRAPHENENANOREINFORCEMENTPLAREACTIVE BLENDINGhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Poly(lactic acid) (PLA) was reactively blended with thermoplastic cassava starch (TPCS) and functionalized with commercial graphene (GRH) nanoplatelets in a twin-screw extruder, and films were produced by cast-film extrusion. Reactive compatibilization between PLA and TPCS phases was reached by introducing maleic anhydride and a peroxide radical during the reactive blending extrusion process. Films with improved elongation at break and toughness for neat PLA and PLA-g-TPCS reactive blends were obtained by an addition of GRH nanoplatelets. Toughness of the PLA-g-TPCS-GRH was improved by ~900% and ~500% when compared to neat PLA and PLA-g-TPCS, respectively. Crack bridging was established as the primary mechanism responsible for the improvement in the mechanical properties of PLA and PLA-g-TPCS in the presence of the nanofiller due to the high aspect ratio of GRH. Scanning electron microscopy images showed a non-uniform distribution of GRH nanoplatelets in the matrix. Transmittance of the reactive blend films decreased due to the TPCS phase. Values obtained for the reactive blends showed ~20% transmittance. PLA-GRH and PLA-g-TPCS-GRH showed a reduction of the oxygen permeability coefficient with respect to PLA of around 35% and 50%, respectively. Thermal properties, molecular structure, surface roughness, XRD pattern, electrical resistivity, and color of the films were also evaluated. Biobased and compostable reactive blend films of PLA-g-TPCS compounded with GRH nanoplatelets could be suitable for food packaging and agricultural applications.Fil: Bher, Anibal Ricardo. Universidad Nacional de San Martín; Argentina. Michigan State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Unalan, Ilke Uysal. Izmir Ekonomi Universitesi; Turquía. Michigan State University; Estados UnidosFil: Auras, Rafael. Michigan State University; Estados UnidosFil: Rubino, Maria. Michigan State University; Estados UnidosFil: Schvezov, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaMolecular Diversity Preservation International2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87111Bher, Anibal Ricardo; Unalan, Ilke Uysal; Auras, Rafael; Rubino, Maria; Schvezov, Carlos Enrique; Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets; Molecular Diversity Preservation International; Polymers; 10; 1; 1-2018; 1-182073-43602073-4360CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/polym10010095info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/10/1/95info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:41Zoai:ri.conicet.gov.ar:11336/87111instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:41.408CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets
title Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets
spellingShingle Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets
Bher, Anibal Ricardo
BIOBASED FILMS
GRAPHENE
NANOREINFORCEMENT
PLA
REACTIVE BLENDING
title_short Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets
title_full Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets
title_fullStr Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets
title_full_unstemmed Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets
title_sort Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets
dc.creator.none.fl_str_mv Bher, Anibal Ricardo
Unalan, Ilke Uysal
Auras, Rafael
Rubino, Maria
Schvezov, Carlos Enrique
author Bher, Anibal Ricardo
author_facet Bher, Anibal Ricardo
Unalan, Ilke Uysal
Auras, Rafael
Rubino, Maria
Schvezov, Carlos Enrique
author_role author
author2 Unalan, Ilke Uysal
Auras, Rafael
Rubino, Maria
Schvezov, Carlos Enrique
author2_role author
author
author
author
dc.subject.none.fl_str_mv BIOBASED FILMS
GRAPHENE
NANOREINFORCEMENT
PLA
REACTIVE BLENDING
topic BIOBASED FILMS
GRAPHENE
NANOREINFORCEMENT
PLA
REACTIVE BLENDING
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Poly(lactic acid) (PLA) was reactively blended with thermoplastic cassava starch (TPCS) and functionalized with commercial graphene (GRH) nanoplatelets in a twin-screw extruder, and films were produced by cast-film extrusion. Reactive compatibilization between PLA and TPCS phases was reached by introducing maleic anhydride and a peroxide radical during the reactive blending extrusion process. Films with improved elongation at break and toughness for neat PLA and PLA-g-TPCS reactive blends were obtained by an addition of GRH nanoplatelets. Toughness of the PLA-g-TPCS-GRH was improved by ~900% and ~500% when compared to neat PLA and PLA-g-TPCS, respectively. Crack bridging was established as the primary mechanism responsible for the improvement in the mechanical properties of PLA and PLA-g-TPCS in the presence of the nanofiller due to the high aspect ratio of GRH. Scanning electron microscopy images showed a non-uniform distribution of GRH nanoplatelets in the matrix. Transmittance of the reactive blend films decreased due to the TPCS phase. Values obtained for the reactive blends showed ~20% transmittance. PLA-GRH and PLA-g-TPCS-GRH showed a reduction of the oxygen permeability coefficient with respect to PLA of around 35% and 50%, respectively. Thermal properties, molecular structure, surface roughness, XRD pattern, electrical resistivity, and color of the films were also evaluated. Biobased and compostable reactive blend films of PLA-g-TPCS compounded with GRH nanoplatelets could be suitable for food packaging and agricultural applications.
Fil: Bher, Anibal Ricardo. Universidad Nacional de San Martín; Argentina. Michigan State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina
Fil: Unalan, Ilke Uysal. Izmir Ekonomi Universitesi; Turquía. Michigan State University; Estados Unidos
Fil: Auras, Rafael. Michigan State University; Estados Unidos
Fil: Rubino, Maria. Michigan State University; Estados Unidos
Fil: Schvezov, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina
description Poly(lactic acid) (PLA) was reactively blended with thermoplastic cassava starch (TPCS) and functionalized with commercial graphene (GRH) nanoplatelets in a twin-screw extruder, and films were produced by cast-film extrusion. Reactive compatibilization between PLA and TPCS phases was reached by introducing maleic anhydride and a peroxide radical during the reactive blending extrusion process. Films with improved elongation at break and toughness for neat PLA and PLA-g-TPCS reactive blends were obtained by an addition of GRH nanoplatelets. Toughness of the PLA-g-TPCS-GRH was improved by ~900% and ~500% when compared to neat PLA and PLA-g-TPCS, respectively. Crack bridging was established as the primary mechanism responsible for the improvement in the mechanical properties of PLA and PLA-g-TPCS in the presence of the nanofiller due to the high aspect ratio of GRH. Scanning electron microscopy images showed a non-uniform distribution of GRH nanoplatelets in the matrix. Transmittance of the reactive blend films decreased due to the TPCS phase. Values obtained for the reactive blends showed ~20% transmittance. PLA-GRH and PLA-g-TPCS-GRH showed a reduction of the oxygen permeability coefficient with respect to PLA of around 35% and 50%, respectively. Thermal properties, molecular structure, surface roughness, XRD pattern, electrical resistivity, and color of the films were also evaluated. Biobased and compostable reactive blend films of PLA-g-TPCS compounded with GRH nanoplatelets could be suitable for food packaging and agricultural applications.
publishDate 2018
dc.date.none.fl_str_mv 2018-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/87111
Bher, Anibal Ricardo; Unalan, Ilke Uysal; Auras, Rafael; Rubino, Maria; Schvezov, Carlos Enrique; Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets; Molecular Diversity Preservation International; Polymers; 10; 1; 1-2018; 1-18
2073-4360
2073-4360
CONICET Digital
CONICET
url http://hdl.handle.net/11336/87111
identifier_str_mv Bher, Anibal Ricardo; Unalan, Ilke Uysal; Auras, Rafael; Rubino, Maria; Schvezov, Carlos Enrique; Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets; Molecular Diversity Preservation International; Polymers; 10; 1; 1-2018; 1-18
2073-4360
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/polym10010095
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/10/1/95
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269241459343360
score 13.13397