Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets
- Autores
- Bher, Anibal Ricardo; Unalan, Ilke Uysal; Auras, Rafael; Rubino, Maria; Schvezov, Carlos Enrique
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Poly(lactic acid) (PLA) was reactively blended with thermoplastic cassava starch (TPCS) and functionalized with commercial graphene (GRH) nanoplatelets in a twin-screw extruder, and films were produced by cast-film extrusion. Reactive compatibilization between PLA and TPCS phases was reached by introducing maleic anhydride and a peroxide radical during the reactive blending extrusion process. Films with improved elongation at break and toughness for neat PLA and PLA-g-TPCS reactive blends were obtained by an addition of GRH nanoplatelets. Toughness of the PLA-g-TPCS-GRH was improved by ~900% and ~500% when compared to neat PLA and PLA-g-TPCS, respectively. Crack bridging was established as the primary mechanism responsible for the improvement in the mechanical properties of PLA and PLA-g-TPCS in the presence of the nanofiller due to the high aspect ratio of GRH. Scanning electron microscopy images showed a non-uniform distribution of GRH nanoplatelets in the matrix. Transmittance of the reactive blend films decreased due to the TPCS phase. Values obtained for the reactive blends showed ~20% transmittance. PLA-GRH and PLA-g-TPCS-GRH showed a reduction of the oxygen permeability coefficient with respect to PLA of around 35% and 50%, respectively. Thermal properties, molecular structure, surface roughness, XRD pattern, electrical resistivity, and color of the films were also evaluated. Biobased and compostable reactive blend films of PLA-g-TPCS compounded with GRH nanoplatelets could be suitable for food packaging and agricultural applications.
Fil: Bher, Anibal Ricardo. Universidad Nacional de San Martín; Argentina. Michigan State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina
Fil: Unalan, Ilke Uysal. Izmir Ekonomi Universitesi; Turquía. Michigan State University; Estados Unidos
Fil: Auras, Rafael. Michigan State University; Estados Unidos
Fil: Rubino, Maria. Michigan State University; Estados Unidos
Fil: Schvezov, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina - Materia
-
BIOBASED FILMS
GRAPHENE
NANOREINFORCEMENT
PLA
REACTIVE BLENDING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87111
Ver los metadatos del registro completo
id |
CONICETDig_03a069fc07f99c75560373f7c5b20117 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87111 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplateletsBher, Anibal RicardoUnalan, Ilke UysalAuras, RafaelRubino, MariaSchvezov, Carlos EnriqueBIOBASED FILMSGRAPHENENANOREINFORCEMENTPLAREACTIVE BLENDINGhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Poly(lactic acid) (PLA) was reactively blended with thermoplastic cassava starch (TPCS) and functionalized with commercial graphene (GRH) nanoplatelets in a twin-screw extruder, and films were produced by cast-film extrusion. Reactive compatibilization between PLA and TPCS phases was reached by introducing maleic anhydride and a peroxide radical during the reactive blending extrusion process. Films with improved elongation at break and toughness for neat PLA and PLA-g-TPCS reactive blends were obtained by an addition of GRH nanoplatelets. Toughness of the PLA-g-TPCS-GRH was improved by ~900% and ~500% when compared to neat PLA and PLA-g-TPCS, respectively. Crack bridging was established as the primary mechanism responsible for the improvement in the mechanical properties of PLA and PLA-g-TPCS in the presence of the nanofiller due to the high aspect ratio of GRH. Scanning electron microscopy images showed a non-uniform distribution of GRH nanoplatelets in the matrix. Transmittance of the reactive blend films decreased due to the TPCS phase. Values obtained for the reactive blends showed ~20% transmittance. PLA-GRH and PLA-g-TPCS-GRH showed a reduction of the oxygen permeability coefficient with respect to PLA of around 35% and 50%, respectively. Thermal properties, molecular structure, surface roughness, XRD pattern, electrical resistivity, and color of the films were also evaluated. Biobased and compostable reactive blend films of PLA-g-TPCS compounded with GRH nanoplatelets could be suitable for food packaging and agricultural applications.Fil: Bher, Anibal Ricardo. Universidad Nacional de San Martín; Argentina. Michigan State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Unalan, Ilke Uysal. Izmir Ekonomi Universitesi; Turquía. Michigan State University; Estados UnidosFil: Auras, Rafael. Michigan State University; Estados UnidosFil: Rubino, Maria. Michigan State University; Estados UnidosFil: Schvezov, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaMolecular Diversity Preservation International2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87111Bher, Anibal Ricardo; Unalan, Ilke Uysal; Auras, Rafael; Rubino, Maria; Schvezov, Carlos Enrique; Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets; Molecular Diversity Preservation International; Polymers; 10; 1; 1-2018; 1-182073-43602073-4360CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/polym10010095info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/10/1/95info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:41Zoai:ri.conicet.gov.ar:11336/87111instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:41.408CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets |
title |
Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets |
spellingShingle |
Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets Bher, Anibal Ricardo BIOBASED FILMS GRAPHENE NANOREINFORCEMENT PLA REACTIVE BLENDING |
title_short |
Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets |
title_full |
Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets |
title_fullStr |
Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets |
title_full_unstemmed |
Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets |
title_sort |
Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets |
dc.creator.none.fl_str_mv |
Bher, Anibal Ricardo Unalan, Ilke Uysal Auras, Rafael Rubino, Maria Schvezov, Carlos Enrique |
author |
Bher, Anibal Ricardo |
author_facet |
Bher, Anibal Ricardo Unalan, Ilke Uysal Auras, Rafael Rubino, Maria Schvezov, Carlos Enrique |
author_role |
author |
author2 |
Unalan, Ilke Uysal Auras, Rafael Rubino, Maria Schvezov, Carlos Enrique |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
BIOBASED FILMS GRAPHENE NANOREINFORCEMENT PLA REACTIVE BLENDING |
topic |
BIOBASED FILMS GRAPHENE NANOREINFORCEMENT PLA REACTIVE BLENDING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Poly(lactic acid) (PLA) was reactively blended with thermoplastic cassava starch (TPCS) and functionalized with commercial graphene (GRH) nanoplatelets in a twin-screw extruder, and films were produced by cast-film extrusion. Reactive compatibilization between PLA and TPCS phases was reached by introducing maleic anhydride and a peroxide radical during the reactive blending extrusion process. Films with improved elongation at break and toughness for neat PLA and PLA-g-TPCS reactive blends were obtained by an addition of GRH nanoplatelets. Toughness of the PLA-g-TPCS-GRH was improved by ~900% and ~500% when compared to neat PLA and PLA-g-TPCS, respectively. Crack bridging was established as the primary mechanism responsible for the improvement in the mechanical properties of PLA and PLA-g-TPCS in the presence of the nanofiller due to the high aspect ratio of GRH. Scanning electron microscopy images showed a non-uniform distribution of GRH nanoplatelets in the matrix. Transmittance of the reactive blend films decreased due to the TPCS phase. Values obtained for the reactive blends showed ~20% transmittance. PLA-GRH and PLA-g-TPCS-GRH showed a reduction of the oxygen permeability coefficient with respect to PLA of around 35% and 50%, respectively. Thermal properties, molecular structure, surface roughness, XRD pattern, electrical resistivity, and color of the films were also evaluated. Biobased and compostable reactive blend films of PLA-g-TPCS compounded with GRH nanoplatelets could be suitable for food packaging and agricultural applications. Fil: Bher, Anibal Ricardo. Universidad Nacional de San Martín; Argentina. Michigan State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina Fil: Unalan, Ilke Uysal. Izmir Ekonomi Universitesi; Turquía. Michigan State University; Estados Unidos Fil: Auras, Rafael. Michigan State University; Estados Unidos Fil: Rubino, Maria. Michigan State University; Estados Unidos Fil: Schvezov, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina |
description |
Poly(lactic acid) (PLA) was reactively blended with thermoplastic cassava starch (TPCS) and functionalized with commercial graphene (GRH) nanoplatelets in a twin-screw extruder, and films were produced by cast-film extrusion. Reactive compatibilization between PLA and TPCS phases was reached by introducing maleic anhydride and a peroxide radical during the reactive blending extrusion process. Films with improved elongation at break and toughness for neat PLA and PLA-g-TPCS reactive blends were obtained by an addition of GRH nanoplatelets. Toughness of the PLA-g-TPCS-GRH was improved by ~900% and ~500% when compared to neat PLA and PLA-g-TPCS, respectively. Crack bridging was established as the primary mechanism responsible for the improvement in the mechanical properties of PLA and PLA-g-TPCS in the presence of the nanofiller due to the high aspect ratio of GRH. Scanning electron microscopy images showed a non-uniform distribution of GRH nanoplatelets in the matrix. Transmittance of the reactive blend films decreased due to the TPCS phase. Values obtained for the reactive blends showed ~20% transmittance. PLA-GRH and PLA-g-TPCS-GRH showed a reduction of the oxygen permeability coefficient with respect to PLA of around 35% and 50%, respectively. Thermal properties, molecular structure, surface roughness, XRD pattern, electrical resistivity, and color of the films were also evaluated. Biobased and compostable reactive blend films of PLA-g-TPCS compounded with GRH nanoplatelets could be suitable for food packaging and agricultural applications. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87111 Bher, Anibal Ricardo; Unalan, Ilke Uysal; Auras, Rafael; Rubino, Maria; Schvezov, Carlos Enrique; Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets; Molecular Diversity Preservation International; Polymers; 10; 1; 1-2018; 1-18 2073-4360 2073-4360 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87111 |
identifier_str_mv |
Bher, Anibal Ricardo; Unalan, Ilke Uysal; Auras, Rafael; Rubino, Maria; Schvezov, Carlos Enrique; Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets; Molecular Diversity Preservation International; Polymers; 10; 1; 1-2018; 1-18 2073-4360 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/polym10010095 info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/10/1/95 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269241459343360 |
score |
13.13397 |