Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade
- Autores
- Lago, Lucas Ignacio; Ponta, Fernando Luis; Otero, Alejandro Daniel
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The correct prediction of flexo-torsional deformation is of capital importance for the future development of advanced wind-turbine blade prototypes. Coupling between bending and twisting can be used to reduce extreme loads and improve fatigue performance. This is the principle of the adaptive blades, where the incremental loads are reduced when, as the blade bends, the flexo-torsional modes of the blade structure produce a change in twist, and so in the angle of attack, modifying the lift force acting on the blade sections. Bend-twist coupling could be achieved either by modifying the internal structure (structural adaptiveness), or by readapting the geometry of the blade (geometrical adaptiveness). These two techniques can be used independently or combined, complementing each other. We have developed a novel computational tool for the aeroelastic analysis of wind-turbine blades, which allows a full representation of the flexo-torsional modes of deformation of the blade as a complex structural part and their effects on the aerodynamic loads. In this paper, we report some recent results we have obtained applying our code to the analysis of geometrical adaptive blades, taking full advantage of the coupled deformation modes that our aeroelastic code can represent. We analyze alternative blade configurations for the NREL-5 MW wind-turbine, optimizing the design to mitigate vibration and improve fatigue performance.
Fil: Lago, Lucas Ignacio. Michigan Technological University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ponta, Fernando Luis. Michigan Technological University; Estados Unidos
Fil: Otero, Alejandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina - Materia
-
Wind Turbine
Blade Aeroelastic Modeling
Blade Adaptiveness
Generalized Timoshenko Model
Innovative Bem Theory Implementation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/25333
Ver los metadatos del registro completo
id |
CONICETDig_038109bef31d1c0c8e4f106ee5312635 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/25333 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine bladeLago, Lucas IgnacioPonta, Fernando LuisOtero, Alejandro DanielWind TurbineBlade Aeroelastic ModelingBlade AdaptivenessGeneralized Timoshenko ModelInnovative Bem Theory Implementationhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The correct prediction of flexo-torsional deformation is of capital importance for the future development of advanced wind-turbine blade prototypes. Coupling between bending and twisting can be used to reduce extreme loads and improve fatigue performance. This is the principle of the adaptive blades, where the incremental loads are reduced when, as the blade bends, the flexo-torsional modes of the blade structure produce a change in twist, and so in the angle of attack, modifying the lift force acting on the blade sections. Bend-twist coupling could be achieved either by modifying the internal structure (structural adaptiveness), or by readapting the geometry of the blade (geometrical adaptiveness). These two techniques can be used independently or combined, complementing each other. We have developed a novel computational tool for the aeroelastic analysis of wind-turbine blades, which allows a full representation of the flexo-torsional modes of deformation of the blade as a complex structural part and their effects on the aerodynamic loads. In this paper, we report some recent results we have obtained applying our code to the analysis of geometrical adaptive blades, taking full advantage of the coupled deformation modes that our aeroelastic code can represent. We analyze alternative blade configurations for the NREL-5 MW wind-turbine, optimizing the design to mitigate vibration and improve fatigue performance.Fil: Lago, Lucas Ignacio. Michigan Technological University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ponta, Fernando Luis. Michigan Technological University; Estados UnidosFil: Otero, Alejandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaElsevier2013-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25333Lago, Lucas Ignacio; Ponta, Fernando Luis; Otero, Alejandro Daniel; Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade; Elsevier; Renewable Energy; 59; 4-2013; 13-220960-1481CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0960148113001638info:eu-repo/semantics/altIdentifier/doi/10.1016/j.renene.2013.03.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:25Zoai:ri.conicet.gov.ar:11336/25333instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:25.324CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade |
title |
Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade |
spellingShingle |
Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade Lago, Lucas Ignacio Wind Turbine Blade Aeroelastic Modeling Blade Adaptiveness Generalized Timoshenko Model Innovative Bem Theory Implementation |
title_short |
Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade |
title_full |
Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade |
title_fullStr |
Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade |
title_full_unstemmed |
Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade |
title_sort |
Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade |
dc.creator.none.fl_str_mv |
Lago, Lucas Ignacio Ponta, Fernando Luis Otero, Alejandro Daniel |
author |
Lago, Lucas Ignacio |
author_facet |
Lago, Lucas Ignacio Ponta, Fernando Luis Otero, Alejandro Daniel |
author_role |
author |
author2 |
Ponta, Fernando Luis Otero, Alejandro Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Wind Turbine Blade Aeroelastic Modeling Blade Adaptiveness Generalized Timoshenko Model Innovative Bem Theory Implementation |
topic |
Wind Turbine Blade Aeroelastic Modeling Blade Adaptiveness Generalized Timoshenko Model Innovative Bem Theory Implementation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The correct prediction of flexo-torsional deformation is of capital importance for the future development of advanced wind-turbine blade prototypes. Coupling between bending and twisting can be used to reduce extreme loads and improve fatigue performance. This is the principle of the adaptive blades, where the incremental loads are reduced when, as the blade bends, the flexo-torsional modes of the blade structure produce a change in twist, and so in the angle of attack, modifying the lift force acting on the blade sections. Bend-twist coupling could be achieved either by modifying the internal structure (structural adaptiveness), or by readapting the geometry of the blade (geometrical adaptiveness). These two techniques can be used independently or combined, complementing each other. We have developed a novel computational tool for the aeroelastic analysis of wind-turbine blades, which allows a full representation of the flexo-torsional modes of deformation of the blade as a complex structural part and their effects on the aerodynamic loads. In this paper, we report some recent results we have obtained applying our code to the analysis of geometrical adaptive blades, taking full advantage of the coupled deformation modes that our aeroelastic code can represent. We analyze alternative blade configurations for the NREL-5 MW wind-turbine, optimizing the design to mitigate vibration and improve fatigue performance. Fil: Lago, Lucas Ignacio. Michigan Technological University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Ponta, Fernando Luis. Michigan Technological University; Estados Unidos Fil: Otero, Alejandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina |
description |
The correct prediction of flexo-torsional deformation is of capital importance for the future development of advanced wind-turbine blade prototypes. Coupling between bending and twisting can be used to reduce extreme loads and improve fatigue performance. This is the principle of the adaptive blades, where the incremental loads are reduced when, as the blade bends, the flexo-torsional modes of the blade structure produce a change in twist, and so in the angle of attack, modifying the lift force acting on the blade sections. Bend-twist coupling could be achieved either by modifying the internal structure (structural adaptiveness), or by readapting the geometry of the blade (geometrical adaptiveness). These two techniques can be used independently or combined, complementing each other. We have developed a novel computational tool for the aeroelastic analysis of wind-turbine blades, which allows a full representation of the flexo-torsional modes of deformation of the blade as a complex structural part and their effects on the aerodynamic loads. In this paper, we report some recent results we have obtained applying our code to the analysis of geometrical adaptive blades, taking full advantage of the coupled deformation modes that our aeroelastic code can represent. We analyze alternative blade configurations for the NREL-5 MW wind-turbine, optimizing the design to mitigate vibration and improve fatigue performance. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/25333 Lago, Lucas Ignacio; Ponta, Fernando Luis; Otero, Alejandro Daniel; Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade; Elsevier; Renewable Energy; 59; 4-2013; 13-22 0960-1481 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/25333 |
identifier_str_mv |
Lago, Lucas Ignacio; Ponta, Fernando Luis; Otero, Alejandro Daniel; Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade; Elsevier; Renewable Energy; 59; 4-2013; 13-22 0960-1481 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0960148113001638 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.renene.2013.03.007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613026088484864 |
score |
13.070432 |