Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade

Autores
Lago, Lucas Ignacio; Ponta, Fernando Luis; Otero, Alejandro Daniel
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The correct prediction of flexo-torsional deformation is of capital importance for the future development of advanced wind-turbine blade prototypes. Coupling between bending and twisting can be used to reduce extreme loads and improve fatigue performance. This is the principle of the adaptive blades, where the incremental loads are reduced when, as the blade bends, the flexo-torsional modes of the blade structure produce a change in twist, and so in the angle of attack, modifying the lift force acting on the blade sections. Bend-twist coupling could be achieved either by modifying the internal structure (structural adaptiveness), or by readapting the geometry of the blade (geometrical adaptiveness). These two techniques can be used independently or combined, complementing each other. We have developed a novel computational tool for the aeroelastic analysis of wind-turbine blades, which allows a full representation of the flexo-torsional modes of deformation of the blade as a complex structural part and their effects on the aerodynamic loads. In this paper, we report some recent results we have obtained applying our code to the analysis of geometrical adaptive blades, taking full advantage of the coupled deformation modes that our aeroelastic code can represent. We analyze alternative blade configurations for the NREL-5 MW wind-turbine, optimizing the design to mitigate vibration and improve fatigue performance.
Fil: Lago, Lucas Ignacio. Michigan Technological University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ponta, Fernando Luis. Michigan Technological University; Estados Unidos
Fil: Otero, Alejandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Materia
Wind Turbine
Blade Aeroelastic Modeling
Blade Adaptiveness
Generalized Timoshenko Model
Innovative Bem Theory Implementation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/25333

id CONICETDig_038109bef31d1c0c8e4f106ee5312635
oai_identifier_str oai:ri.conicet.gov.ar:11336/25333
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine bladeLago, Lucas IgnacioPonta, Fernando LuisOtero, Alejandro DanielWind TurbineBlade Aeroelastic ModelingBlade AdaptivenessGeneralized Timoshenko ModelInnovative Bem Theory Implementationhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The correct prediction of flexo-torsional deformation is of capital importance for the future development of advanced wind-turbine blade prototypes. Coupling between bending and twisting can be used to reduce extreme loads and improve fatigue performance. This is the principle of the adaptive blades, where the incremental loads are reduced when, as the blade bends, the flexo-torsional modes of the blade structure produce a change in twist, and so in the angle of attack, modifying the lift force acting on the blade sections. Bend-twist coupling could be achieved either by modifying the internal structure (structural adaptiveness), or by readapting the geometry of the blade (geometrical adaptiveness). These two techniques can be used independently or combined, complementing each other. We have developed a novel computational tool for the aeroelastic analysis of wind-turbine blades, which allows a full representation of the flexo-torsional modes of deformation of the blade as a complex structural part and their effects on the aerodynamic loads. In this paper, we report some recent results we have obtained applying our code to the analysis of geometrical adaptive blades, taking full advantage of the coupled deformation modes that our aeroelastic code can represent. We analyze alternative blade configurations for the NREL-5 MW wind-turbine, optimizing the design to mitigate vibration and improve fatigue performance.Fil: Lago, Lucas Ignacio. Michigan Technological University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ponta, Fernando Luis. Michigan Technological University; Estados UnidosFil: Otero, Alejandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaElsevier2013-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25333Lago, Lucas Ignacio; Ponta, Fernando Luis; Otero, Alejandro Daniel; Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade; Elsevier; Renewable Energy; 59; 4-2013; 13-220960-1481CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0960148113001638info:eu-repo/semantics/altIdentifier/doi/10.1016/j.renene.2013.03.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:25Zoai:ri.conicet.gov.ar:11336/25333instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:25.324CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade
title Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade
spellingShingle Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade
Lago, Lucas Ignacio
Wind Turbine
Blade Aeroelastic Modeling
Blade Adaptiveness
Generalized Timoshenko Model
Innovative Bem Theory Implementation
title_short Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade
title_full Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade
title_fullStr Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade
title_full_unstemmed Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade
title_sort Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade
dc.creator.none.fl_str_mv Lago, Lucas Ignacio
Ponta, Fernando Luis
Otero, Alejandro Daniel
author Lago, Lucas Ignacio
author_facet Lago, Lucas Ignacio
Ponta, Fernando Luis
Otero, Alejandro Daniel
author_role author
author2 Ponta, Fernando Luis
Otero, Alejandro Daniel
author2_role author
author
dc.subject.none.fl_str_mv Wind Turbine
Blade Aeroelastic Modeling
Blade Adaptiveness
Generalized Timoshenko Model
Innovative Bem Theory Implementation
topic Wind Turbine
Blade Aeroelastic Modeling
Blade Adaptiveness
Generalized Timoshenko Model
Innovative Bem Theory Implementation
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The correct prediction of flexo-torsional deformation is of capital importance for the future development of advanced wind-turbine blade prototypes. Coupling between bending and twisting can be used to reduce extreme loads and improve fatigue performance. This is the principle of the adaptive blades, where the incremental loads are reduced when, as the blade bends, the flexo-torsional modes of the blade structure produce a change in twist, and so in the angle of attack, modifying the lift force acting on the blade sections. Bend-twist coupling could be achieved either by modifying the internal structure (structural adaptiveness), or by readapting the geometry of the blade (geometrical adaptiveness). These two techniques can be used independently or combined, complementing each other. We have developed a novel computational tool for the aeroelastic analysis of wind-turbine blades, which allows a full representation of the flexo-torsional modes of deformation of the blade as a complex structural part and their effects on the aerodynamic loads. In this paper, we report some recent results we have obtained applying our code to the analysis of geometrical adaptive blades, taking full advantage of the coupled deformation modes that our aeroelastic code can represent. We analyze alternative blade configurations for the NREL-5 MW wind-turbine, optimizing the design to mitigate vibration and improve fatigue performance.
Fil: Lago, Lucas Ignacio. Michigan Technological University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ponta, Fernando Luis. Michigan Technological University; Estados Unidos
Fil: Otero, Alejandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
description The correct prediction of flexo-torsional deformation is of capital importance for the future development of advanced wind-turbine blade prototypes. Coupling between bending and twisting can be used to reduce extreme loads and improve fatigue performance. This is the principle of the adaptive blades, where the incremental loads are reduced when, as the blade bends, the flexo-torsional modes of the blade structure produce a change in twist, and so in the angle of attack, modifying the lift force acting on the blade sections. Bend-twist coupling could be achieved either by modifying the internal structure (structural adaptiveness), or by readapting the geometry of the blade (geometrical adaptiveness). These two techniques can be used independently or combined, complementing each other. We have developed a novel computational tool for the aeroelastic analysis of wind-turbine blades, which allows a full representation of the flexo-torsional modes of deformation of the blade as a complex structural part and their effects on the aerodynamic loads. In this paper, we report some recent results we have obtained applying our code to the analysis of geometrical adaptive blades, taking full advantage of the coupled deformation modes that our aeroelastic code can represent. We analyze alternative blade configurations for the NREL-5 MW wind-turbine, optimizing the design to mitigate vibration and improve fatigue performance.
publishDate 2013
dc.date.none.fl_str_mv 2013-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/25333
Lago, Lucas Ignacio; Ponta, Fernando Luis; Otero, Alejandro Daniel; Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade; Elsevier; Renewable Energy; 59; 4-2013; 13-22
0960-1481
CONICET Digital
CONICET
url http://hdl.handle.net/11336/25333
identifier_str_mv Lago, Lucas Ignacio; Ponta, Fernando Luis; Otero, Alejandro Daniel; Analysis of alternative adaptive geometrical configurations for the NREL-5MW wind turbine blade; Elsevier; Renewable Energy; 59; 4-2013; 13-22
0960-1481
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0960148113001638
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.renene.2013.03.007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613026088484864
score 13.070432