Inverse Problem of Capillary Filling
- Autores
- Elizalde, Emanuel; Urteaga, Raul; Koropecki, Roberto Roman; Berli, Claudio Luis Alberto
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The inverse problem of capillary filling, as defined in this work, consists in determining the capillary radius profile from experimental data of the meniscus position l as a function of time t. This problem is central in diverse applications, such as the characterization of nanopore arrays or the design of passive transport in microfluidics; it is mathematically ill posed and has multiple solutions; i.e., capillaries with different geometries may produce the same imbibition kinematics. Here a suitable approach is proposed to solve this problem, which is based on measuring the imbibition kinematics in both tube directions. Capillary filling experiments to validate the calculation were made in a wide range of length scales: glass capillaries with a radius of around 150 μm and anodized alumina membranes with a pores radius of around 30 nm were used. The proposed method was successful in identifying the radius profile in both systems. Fundamental aspects also emerge in this study, notably the fact that the l(t)∝t1/2 kinematics (Lucas-Washburn relation) is not exclusive of uniform cross-sectional capillaries.
Fil: Elizalde, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Koropecki, Roberto Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Berli, Claudio Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina - Materia
-
Optofluidics
Liquid Permeation
Porous Materials - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4427
Ver los metadatos del registro completo
id |
CONICETDig_033f9633147792271b79201fea2c5f0a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4427 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Inverse Problem of Capillary FillingElizalde, EmanuelUrteaga, RaulKoropecki, Roberto RomanBerli, Claudio Luis AlbertoOptofluidicsLiquid PermeationPorous Materialshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The inverse problem of capillary filling, as defined in this work, consists in determining the capillary radius profile from experimental data of the meniscus position l as a function of time t. This problem is central in diverse applications, such as the characterization of nanopore arrays or the design of passive transport in microfluidics; it is mathematically ill posed and has multiple solutions; i.e., capillaries with different geometries may produce the same imbibition kinematics. Here a suitable approach is proposed to solve this problem, which is based on measuring the imbibition kinematics in both tube directions. Capillary filling experiments to validate the calculation were made in a wide range of length scales: glass capillaries with a radius of around 150 μm and anodized alumina membranes with a pores radius of around 30 nm were used. The proposed method was successful in identifying the radius profile in both systems. Fundamental aspects also emerge in this study, notably the fact that the l(t)∝t1/2 kinematics (Lucas-Washburn relation) is not exclusive of uniform cross-sectional capillaries.Fil: Elizalde, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; ArgentinaFil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; ArgentinaFil: Koropecki, Roberto Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; ArgentinaFil: Berli, Claudio Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaAmerican Physical Society2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4427Elizalde, Emanuel; Urteaga, Raul; Koropecki, Roberto Roman; Berli, Claudio Luis Alberto; Inverse Problem of Capillary Filling; American Physical Society; Physical Review Letters; 112; 13; 4-2014; 1-50031-9007enginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.134502info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.112.134502info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:47:20Zoai:ri.conicet.gov.ar:11336/4427instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:47:21.109CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Inverse Problem of Capillary Filling |
title |
Inverse Problem of Capillary Filling |
spellingShingle |
Inverse Problem of Capillary Filling Elizalde, Emanuel Optofluidics Liquid Permeation Porous Materials |
title_short |
Inverse Problem of Capillary Filling |
title_full |
Inverse Problem of Capillary Filling |
title_fullStr |
Inverse Problem of Capillary Filling |
title_full_unstemmed |
Inverse Problem of Capillary Filling |
title_sort |
Inverse Problem of Capillary Filling |
dc.creator.none.fl_str_mv |
Elizalde, Emanuel Urteaga, Raul Koropecki, Roberto Roman Berli, Claudio Luis Alberto |
author |
Elizalde, Emanuel |
author_facet |
Elizalde, Emanuel Urteaga, Raul Koropecki, Roberto Roman Berli, Claudio Luis Alberto |
author_role |
author |
author2 |
Urteaga, Raul Koropecki, Roberto Roman Berli, Claudio Luis Alberto |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Optofluidics Liquid Permeation Porous Materials |
topic |
Optofluidics Liquid Permeation Porous Materials |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The inverse problem of capillary filling, as defined in this work, consists in determining the capillary radius profile from experimental data of the meniscus position l as a function of time t. This problem is central in diverse applications, such as the characterization of nanopore arrays or the design of passive transport in microfluidics; it is mathematically ill posed and has multiple solutions; i.e., capillaries with different geometries may produce the same imbibition kinematics. Here a suitable approach is proposed to solve this problem, which is based on measuring the imbibition kinematics in both tube directions. Capillary filling experiments to validate the calculation were made in a wide range of length scales: glass capillaries with a radius of around 150 μm and anodized alumina membranes with a pores radius of around 30 nm were used. The proposed method was successful in identifying the radius profile in both systems. Fundamental aspects also emerge in this study, notably the fact that the l(t)∝t1/2 kinematics (Lucas-Washburn relation) is not exclusive of uniform cross-sectional capillaries. Fil: Elizalde, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina Fil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina Fil: Koropecki, Roberto Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina Fil: Berli, Claudio Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina |
description |
The inverse problem of capillary filling, as defined in this work, consists in determining the capillary radius profile from experimental data of the meniscus position l as a function of time t. This problem is central in diverse applications, such as the characterization of nanopore arrays or the design of passive transport in microfluidics; it is mathematically ill posed and has multiple solutions; i.e., capillaries with different geometries may produce the same imbibition kinematics. Here a suitable approach is proposed to solve this problem, which is based on measuring the imbibition kinematics in both tube directions. Capillary filling experiments to validate the calculation were made in a wide range of length scales: glass capillaries with a radius of around 150 μm and anodized alumina membranes with a pores radius of around 30 nm were used. The proposed method was successful in identifying the radius profile in both systems. Fundamental aspects also emerge in this study, notably the fact that the l(t)∝t1/2 kinematics (Lucas-Washburn relation) is not exclusive of uniform cross-sectional capillaries. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4427 Elizalde, Emanuel; Urteaga, Raul; Koropecki, Roberto Roman; Berli, Claudio Luis Alberto; Inverse Problem of Capillary Filling; American Physical Society; Physical Review Letters; 112; 13; 4-2014; 1-5 0031-9007 |
url |
http://hdl.handle.net/11336/4427 |
identifier_str_mv |
Elizalde, Emanuel; Urteaga, Raul; Koropecki, Roberto Roman; Berli, Claudio Luis Alberto; Inverse Problem of Capillary Filling; American Physical Society; Physical Review Letters; 112; 13; 4-2014; 1-5 0031-9007 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.134502 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.112.134502 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082989097746432 |
score |
13.22299 |