Inverse Problem of Capillary Filling

Autores
Elizalde, Emanuel; Urteaga, Raul; Koropecki, Roberto Roman; Berli, Claudio Luis Alberto
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The inverse problem of capillary filling, as defined in this work, consists in determining the capillary radius profile from experimental data of the meniscus position l as a function of time t. This problem is central in diverse applications, such as the characterization of nanopore arrays or the design of passive transport in microfluidics; it is mathematically ill posed and has multiple solutions; i.e., capillaries with different geometries may produce the same imbibition kinematics. Here a suitable approach is proposed to solve this problem, which is based on measuring the imbibition kinematics in both tube directions. Capillary filling experiments to validate the calculation were made in a wide range of length scales: glass capillaries with a radius of around 150  μm and anodized alumina membranes with a pores radius of around 30  nm were used. The proposed method was successful in identifying the radius profile in both systems. Fundamental aspects also emerge in this study, notably the fact that the l(t)∝t1/2 kinematics (Lucas-Washburn relation) is not exclusive of uniform cross-sectional capillaries.
Fil: Elizalde, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Koropecki, Roberto Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Berli, Claudio Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
Materia
Optofluidics
Liquid Permeation
Porous Materials
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/4427

id CONICETDig_033f9633147792271b79201fea2c5f0a
oai_identifier_str oai:ri.conicet.gov.ar:11336/4427
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Inverse Problem of Capillary FillingElizalde, EmanuelUrteaga, RaulKoropecki, Roberto RomanBerli, Claudio Luis AlbertoOptofluidicsLiquid PermeationPorous Materialshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The inverse problem of capillary filling, as defined in this work, consists in determining the capillary radius profile from experimental data of the meniscus position l as a function of time t. This problem is central in diverse applications, such as the characterization of nanopore arrays or the design of passive transport in microfluidics; it is mathematically ill posed and has multiple solutions; i.e., capillaries with different geometries may produce the same imbibition kinematics. Here a suitable approach is proposed to solve this problem, which is based on measuring the imbibition kinematics in both tube directions. Capillary filling experiments to validate the calculation were made in a wide range of length scales: glass capillaries with a radius of around 150  μm and anodized alumina membranes with a pores radius of around 30  nm were used. The proposed method was successful in identifying the radius profile in both systems. Fundamental aspects also emerge in this study, notably the fact that the l(t)∝t1/2 kinematics (Lucas-Washburn relation) is not exclusive of uniform cross-sectional capillaries.Fil: Elizalde, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; ArgentinaFil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; ArgentinaFil: Koropecki, Roberto Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; ArgentinaFil: Berli, Claudio Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaAmerican Physical Society2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4427Elizalde, Emanuel; Urteaga, Raul; Koropecki, Roberto Roman; Berli, Claudio Luis Alberto; Inverse Problem of Capillary Filling; American Physical Society; Physical Review Letters; 112; 13; 4-2014; 1-50031-9007enginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.134502info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.112.134502info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:47:20Zoai:ri.conicet.gov.ar:11336/4427instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:47:21.109CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Inverse Problem of Capillary Filling
title Inverse Problem of Capillary Filling
spellingShingle Inverse Problem of Capillary Filling
Elizalde, Emanuel
Optofluidics
Liquid Permeation
Porous Materials
title_short Inverse Problem of Capillary Filling
title_full Inverse Problem of Capillary Filling
title_fullStr Inverse Problem of Capillary Filling
title_full_unstemmed Inverse Problem of Capillary Filling
title_sort Inverse Problem of Capillary Filling
dc.creator.none.fl_str_mv Elizalde, Emanuel
Urteaga, Raul
Koropecki, Roberto Roman
Berli, Claudio Luis Alberto
author Elizalde, Emanuel
author_facet Elizalde, Emanuel
Urteaga, Raul
Koropecki, Roberto Roman
Berli, Claudio Luis Alberto
author_role author
author2 Urteaga, Raul
Koropecki, Roberto Roman
Berli, Claudio Luis Alberto
author2_role author
author
author
dc.subject.none.fl_str_mv Optofluidics
Liquid Permeation
Porous Materials
topic Optofluidics
Liquid Permeation
Porous Materials
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The inverse problem of capillary filling, as defined in this work, consists in determining the capillary radius profile from experimental data of the meniscus position l as a function of time t. This problem is central in diverse applications, such as the characterization of nanopore arrays or the design of passive transport in microfluidics; it is mathematically ill posed and has multiple solutions; i.e., capillaries with different geometries may produce the same imbibition kinematics. Here a suitable approach is proposed to solve this problem, which is based on measuring the imbibition kinematics in both tube directions. Capillary filling experiments to validate the calculation were made in a wide range of length scales: glass capillaries with a radius of around 150  μm and anodized alumina membranes with a pores radius of around 30  nm were used. The proposed method was successful in identifying the radius profile in both systems. Fundamental aspects also emerge in this study, notably the fact that the l(t)∝t1/2 kinematics (Lucas-Washburn relation) is not exclusive of uniform cross-sectional capillaries.
Fil: Elizalde, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Koropecki, Roberto Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Berli, Claudio Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
description The inverse problem of capillary filling, as defined in this work, consists in determining the capillary radius profile from experimental data of the meniscus position l as a function of time t. This problem is central in diverse applications, such as the characterization of nanopore arrays or the design of passive transport in microfluidics; it is mathematically ill posed and has multiple solutions; i.e., capillaries with different geometries may produce the same imbibition kinematics. Here a suitable approach is proposed to solve this problem, which is based on measuring the imbibition kinematics in both tube directions. Capillary filling experiments to validate the calculation were made in a wide range of length scales: glass capillaries with a radius of around 150  μm and anodized alumina membranes with a pores radius of around 30  nm were used. The proposed method was successful in identifying the radius profile in both systems. Fundamental aspects also emerge in this study, notably the fact that the l(t)∝t1/2 kinematics (Lucas-Washburn relation) is not exclusive of uniform cross-sectional capillaries.
publishDate 2014
dc.date.none.fl_str_mv 2014-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/4427
Elizalde, Emanuel; Urteaga, Raul; Koropecki, Roberto Roman; Berli, Claudio Luis Alberto; Inverse Problem of Capillary Filling; American Physical Society; Physical Review Letters; 112; 13; 4-2014; 1-5
0031-9007
url http://hdl.handle.net/11336/4427
identifier_str_mv Elizalde, Emanuel; Urteaga, Raul; Koropecki, Roberto Roman; Berli, Claudio Luis Alberto; Inverse Problem of Capillary Filling; American Physical Society; Physical Review Letters; 112; 13; 4-2014; 1-5
0031-9007
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.134502
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.112.134502
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082989097746432
score 13.22299