Online suboptimal control of linearized models

Autores
Costanza, Vicente; Rivadeneira Paz, Pablo Santiago
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A novel approach to approximately solving the restricted-control LQR problem online is substantiated and applied in two case-studies.  The first example is a one-dimensional system whose exact solution is known.  The other one refers to the temperature control of a metallic strip at the exit of a multi-stand rolling mill.  The new (online-feedback) strategy employs a convenient version of the gradient method, where partial derivatives of the cost are taken with respect to the final penalization matrix coefficients and to the switching times where the control (de)saturates.  The calculations are based on exact algebraic formula, which do not involve trajectory simulations, and so reducing in principle the computational effort associated with receding horizon or nonlinear programming methods.   
Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Materia
OPTIMAL CONTROL
RESTRICTED CONTROLS
ON LINE OPTIMIZATION
PARTIAL DIFFERENTIAL EQUATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/9251

id CONICETDig_031fbc333c8557f4e22293804156965b
oai_identifier_str oai:ri.conicet.gov.ar:11336/9251
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Online suboptimal control of linearized modelsCostanza, VicenteRivadeneira Paz, Pablo SantiagoOPTIMAL CONTROLRESTRICTED CONTROLSON LINE OPTIMIZATIONPARTIAL DIFFERENTIAL EQUATIONShttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2A novel approach to approximately solving the restricted-control LQR problem online is substantiated and applied in two case-studies.  The first example is a one-dimensional system whose exact solution is known.  The other one refers to the temperature control of a metallic strip at the exit of a multi-stand rolling mill.  The new (online-feedback) strategy employs a convenient version of the gradient method, where partial derivatives of the cost are taken with respect to the final penalization matrix coefficients and to the switching times where the control (de)saturates.  The calculations are based on exact algebraic formula, which do not involve trajectory simulations, and so reducing in principle the computational effort associated with receding horizon or nonlinear programming methods.   Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaTaylor & Francis2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9251Costanza, Vicente; Rivadeneira Paz, Pablo Santiago; Online suboptimal control of linearized models; Taylor & Francis; Systems Science & Control Engineering; 2; 1; 4-2014; 379-3882164-2583enginfo:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/21642583.2014.913215info:eu-repo/semantics/altIdentifier/doi/10.1080/21642583.2014.913215info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:16Zoai:ri.conicet.gov.ar:11336/9251instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:16.429CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Online suboptimal control of linearized models
title Online suboptimal control of linearized models
spellingShingle Online suboptimal control of linearized models
Costanza, Vicente
OPTIMAL CONTROL
RESTRICTED CONTROLS
ON LINE OPTIMIZATION
PARTIAL DIFFERENTIAL EQUATIONS
title_short Online suboptimal control of linearized models
title_full Online suboptimal control of linearized models
title_fullStr Online suboptimal control of linearized models
title_full_unstemmed Online suboptimal control of linearized models
title_sort Online suboptimal control of linearized models
dc.creator.none.fl_str_mv Costanza, Vicente
Rivadeneira Paz, Pablo Santiago
author Costanza, Vicente
author_facet Costanza, Vicente
Rivadeneira Paz, Pablo Santiago
author_role author
author2 Rivadeneira Paz, Pablo Santiago
author2_role author
dc.subject.none.fl_str_mv OPTIMAL CONTROL
RESTRICTED CONTROLS
ON LINE OPTIMIZATION
PARTIAL DIFFERENTIAL EQUATIONS
topic OPTIMAL CONTROL
RESTRICTED CONTROLS
ON LINE OPTIMIZATION
PARTIAL DIFFERENTIAL EQUATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A novel approach to approximately solving the restricted-control LQR problem online is substantiated and applied in two case-studies.  The first example is a one-dimensional system whose exact solution is known.  The other one refers to the temperature control of a metallic strip at the exit of a multi-stand rolling mill.  The new (online-feedback) strategy employs a convenient version of the gradient method, where partial derivatives of the cost are taken with respect to the final penalization matrix coefficients and to the switching times where the control (de)saturates.  The calculations are based on exact algebraic formula, which do not involve trajectory simulations, and so reducing in principle the computational effort associated with receding horizon or nonlinear programming methods.   
Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
description A novel approach to approximately solving the restricted-control LQR problem online is substantiated and applied in two case-studies.  The first example is a one-dimensional system whose exact solution is known.  The other one refers to the temperature control of a metallic strip at the exit of a multi-stand rolling mill.  The new (online-feedback) strategy employs a convenient version of the gradient method, where partial derivatives of the cost are taken with respect to the final penalization matrix coefficients and to the switching times where the control (de)saturates.  The calculations are based on exact algebraic formula, which do not involve trajectory simulations, and so reducing in principle the computational effort associated with receding horizon or nonlinear programming methods.   
publishDate 2014
dc.date.none.fl_str_mv 2014-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/9251
Costanza, Vicente; Rivadeneira Paz, Pablo Santiago; Online suboptimal control of linearized models; Taylor & Francis; Systems Science & Control Engineering; 2; 1; 4-2014; 379-388
2164-2583
url http://hdl.handle.net/11336/9251
identifier_str_mv Costanza, Vicente; Rivadeneira Paz, Pablo Santiago; Online suboptimal control of linearized models; Taylor & Francis; Systems Science & Control Engineering; 2; 1; 4-2014; 379-388
2164-2583
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/21642583.2014.913215
info:eu-repo/semantics/altIdentifier/doi/10.1080/21642583.2014.913215
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268590253801472
score 13.13397