Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium
- Autores
- Sardella, Maria Fabiana; Gimenez Guerrero, Marianela Gema; Navas Echenique, Cintia Silvina; Morandi, Cecilia; Deiana, Cristina; Sapag, Manuel Karim
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Many industrial activities generate large quantities of biomass wastes. The use of these to produce added value products or energy has become very important in recent years. Heavy metals as lead and cadmium are among the most toxic chemical water pollutants from natural or anthropogenic sources. This paper presents the studies carried out to assess the feasibility of preparing activated carbons from grape industrialization wastes of Cuyo Region, Argentina, grape stalk, lex and pomace, and their application for the removal of lead and cadmium. These materials were activated with steam. The activation conditions of each material were adjusted until the porosity and yield were acceptable. Products were characterized by their textural (BET area, porous volume) and physicochemical properties (proximate and elemental analysis, acid and basic surface groups, pHpzc, FTIR). In order to determine the effectiveness of these products on lead and cadmium adsorption, kinetics and equilibrium assays were carried out. Adsorption data were fitted to Langmuir and Freundlich models. All the adsorbents obtained were mainly microporous and showed a markedly basic character with pHpzc values above 10. The study of the effect of pH over lead and cadmium adsorption showed that the maximum retention of metal is attained at pH 5.5 and 6, respectively. Removal percentages around 98% were reached when grape pomace activated carbons were used. The other adsorbents showed lower removal efficiency. Adsorbent textural properties did not show influence on cadmium and lead adsorption under the experimental conditions of this work. The pH of suspensions was a relevant variable in the adsorption of metals and their regulation was difficult. Consequently, the removal of lead and cadmium was attributed to the combined effect of adsorption and precipitation.
Fil: Sardella, Maria Fabiana. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gimenez Guerrero, Marianela Gema. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Navas Echenique, Cintia Silvina. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Morandi, Cecilia. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; Argentina
Fil: Deiana, Cristina. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; Argentina
Fil: Sapag, Manuel Karim. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina - Materia
-
Viticultural Waste
Lead
Cadmium
Adsorption - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/7637
Ver los metadatos del registro completo
id |
CONICETDig_02fdb4bab497bd433819e9827e47bb0d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/7637 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmiumSardella, Maria FabianaGimenez Guerrero, Marianela GemaNavas Echenique, Cintia SilvinaMorandi, CeciliaDeiana, CristinaSapag, Manuel KarimViticultural WasteLeadCadmiumAdsorptionhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Many industrial activities generate large quantities of biomass wastes. The use of these to produce added value products or energy has become very important in recent years. Heavy metals as lead and cadmium are among the most toxic chemical water pollutants from natural or anthropogenic sources. This paper presents the studies carried out to assess the feasibility of preparing activated carbons from grape industrialization wastes of Cuyo Region, Argentina, grape stalk, lex and pomace, and their application for the removal of lead and cadmium. These materials were activated with steam. The activation conditions of each material were adjusted until the porosity and yield were acceptable. Products were characterized by their textural (BET area, porous volume) and physicochemical properties (proximate and elemental analysis, acid and basic surface groups, pHpzc, FTIR). In order to determine the effectiveness of these products on lead and cadmium adsorption, kinetics and equilibrium assays were carried out. Adsorption data were fitted to Langmuir and Freundlich models. All the adsorbents obtained were mainly microporous and showed a markedly basic character with pHpzc values above 10. The study of the effect of pH over lead and cadmium adsorption showed that the maximum retention of metal is attained at pH 5.5 and 6, respectively. Removal percentages around 98% were reached when grape pomace activated carbons were used. The other adsorbents showed lower removal efficiency. Adsorbent textural properties did not show influence on cadmium and lead adsorption under the experimental conditions of this work. The pH of suspensions was a relevant variable in the adsorption of metals and their regulation was difficult. Consequently, the removal of lead and cadmium was attributed to the combined effect of adsorption and precipitation.Fil: Sardella, Maria Fabiana. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gimenez Guerrero, Marianela Gema. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Navas Echenique, Cintia Silvina. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Morandi, Cecilia. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; ArgentinaFil: Deiana, Cristina. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; ArgentinaFil: Sapag, Manuel Karim. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; ArgentinaElsevier2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7637Sardella, Maria Fabiana; Gimenez Guerrero, Marianela Gema; Navas Echenique, Cintia Silvina; Morandi, Cecilia; Deiana, Cristina; et al.; Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium; Elsevier; Journal of Environmental Chemical Engineering; 3; 1; 3-2014; 253-2602213-3437enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S2213343714001420info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jece.2014.06.026info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:24:34Zoai:ri.conicet.gov.ar:11336/7637instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:24:34.996CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium |
title |
Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium |
spellingShingle |
Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium Sardella, Maria Fabiana Viticultural Waste Lead Cadmium Adsorption |
title_short |
Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium |
title_full |
Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium |
title_fullStr |
Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium |
title_full_unstemmed |
Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium |
title_sort |
Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium |
dc.creator.none.fl_str_mv |
Sardella, Maria Fabiana Gimenez Guerrero, Marianela Gema Navas Echenique, Cintia Silvina Morandi, Cecilia Deiana, Cristina Sapag, Manuel Karim |
author |
Sardella, Maria Fabiana |
author_facet |
Sardella, Maria Fabiana Gimenez Guerrero, Marianela Gema Navas Echenique, Cintia Silvina Morandi, Cecilia Deiana, Cristina Sapag, Manuel Karim |
author_role |
author |
author2 |
Gimenez Guerrero, Marianela Gema Navas Echenique, Cintia Silvina Morandi, Cecilia Deiana, Cristina Sapag, Manuel Karim |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Viticultural Waste Lead Cadmium Adsorption |
topic |
Viticultural Waste Lead Cadmium Adsorption |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Many industrial activities generate large quantities of biomass wastes. The use of these to produce added value products or energy has become very important in recent years. Heavy metals as lead and cadmium are among the most toxic chemical water pollutants from natural or anthropogenic sources. This paper presents the studies carried out to assess the feasibility of preparing activated carbons from grape industrialization wastes of Cuyo Region, Argentina, grape stalk, lex and pomace, and their application for the removal of lead and cadmium. These materials were activated with steam. The activation conditions of each material were adjusted until the porosity and yield were acceptable. Products were characterized by their textural (BET area, porous volume) and physicochemical properties (proximate and elemental analysis, acid and basic surface groups, pHpzc, FTIR). In order to determine the effectiveness of these products on lead and cadmium adsorption, kinetics and equilibrium assays were carried out. Adsorption data were fitted to Langmuir and Freundlich models. All the adsorbents obtained were mainly microporous and showed a markedly basic character with pHpzc values above 10. The study of the effect of pH over lead and cadmium adsorption showed that the maximum retention of metal is attained at pH 5.5 and 6, respectively. Removal percentages around 98% were reached when grape pomace activated carbons were used. The other adsorbents showed lower removal efficiency. Adsorbent textural properties did not show influence on cadmium and lead adsorption under the experimental conditions of this work. The pH of suspensions was a relevant variable in the adsorption of metals and their regulation was difficult. Consequently, the removal of lead and cadmium was attributed to the combined effect of adsorption and precipitation. Fil: Sardella, Maria Fabiana. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gimenez Guerrero, Marianela Gema. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Navas Echenique, Cintia Silvina. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Morandi, Cecilia. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; Argentina Fil: Deiana, Cristina. Universidad Nacional de San Juan. Facultad de Ingenieria. Instituto de Ingenieria Quimica; Argentina Fil: Sapag, Manuel Karim. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina |
description |
Many industrial activities generate large quantities of biomass wastes. The use of these to produce added value products or energy has become very important in recent years. Heavy metals as lead and cadmium are among the most toxic chemical water pollutants from natural or anthropogenic sources. This paper presents the studies carried out to assess the feasibility of preparing activated carbons from grape industrialization wastes of Cuyo Region, Argentina, grape stalk, lex and pomace, and their application for the removal of lead and cadmium. These materials were activated with steam. The activation conditions of each material were adjusted until the porosity and yield were acceptable. Products were characterized by their textural (BET area, porous volume) and physicochemical properties (proximate and elemental analysis, acid and basic surface groups, pHpzc, FTIR). In order to determine the effectiveness of these products on lead and cadmium adsorption, kinetics and equilibrium assays were carried out. Adsorption data were fitted to Langmuir and Freundlich models. All the adsorbents obtained were mainly microporous and showed a markedly basic character with pHpzc values above 10. The study of the effect of pH over lead and cadmium adsorption showed that the maximum retention of metal is attained at pH 5.5 and 6, respectively. Removal percentages around 98% were reached when grape pomace activated carbons were used. The other adsorbents showed lower removal efficiency. Adsorbent textural properties did not show influence on cadmium and lead adsorption under the experimental conditions of this work. The pH of suspensions was a relevant variable in the adsorption of metals and their regulation was difficult. Consequently, the removal of lead and cadmium was attributed to the combined effect of adsorption and precipitation. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/7637 Sardella, Maria Fabiana; Gimenez Guerrero, Marianela Gema; Navas Echenique, Cintia Silvina; Morandi, Cecilia; Deiana, Cristina; et al.; Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium; Elsevier; Journal of Environmental Chemical Engineering; 3; 1; 3-2014; 253-260 2213-3437 |
url |
http://hdl.handle.net/11336/7637 |
identifier_str_mv |
Sardella, Maria Fabiana; Gimenez Guerrero, Marianela Gema; Navas Echenique, Cintia Silvina; Morandi, Cecilia; Deiana, Cristina; et al.; Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium; Elsevier; Journal of Environmental Chemical Engineering; 3; 1; 3-2014; 253-260 2213-3437 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S2213343714001420 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jece.2014.06.026 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082669284163584 |
score |
13.22299 |