Highly accurate calculation of the real and complex eigenvalues of one-dimensional anharmonic oscillators

Autores
Fernández, Francisco Marcelo; Garcia, Javier
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We draw attention on the fact that the Riccati-Padé method developed some time ago enables the accurate calculation of bound-state eigenvalues as well as of resonances embedded either in the continuum or in the discrete spectrum. We apply the approach to several one-dimensional models that exhibit different kind of spectra. In particular we test a WKB formula for the imaginary part of the resonance in the discrete spectrum of a three-well potential.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Garcia, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Materia
ANHARMONIC OSCILLATORS
BOUND STATES
RESONANCES
RICCATI-PADÉ METHOD
WKB ASYMPTOTIC EXPRESSION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/64296

id CONICETDig_02f8526f909d720c39e6c31a9262f582
oai_identifier_str oai:ri.conicet.gov.ar:11336/64296
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Highly accurate calculation of the real and complex eigenvalues of one-dimensional anharmonic oscillatorsFernández, Francisco MarceloGarcia, JavierANHARMONIC OSCILLATORSBOUND STATESRESONANCESRICCATI-PADÉ METHODWKB ASYMPTOTIC EXPRESSIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We draw attention on the fact that the Riccati-Padé method developed some time ago enables the accurate calculation of bound-state eigenvalues as well as of resonances embedded either in the continuum or in the discrete spectrum. We apply the approach to several one-dimensional models that exhibit different kind of spectra. In particular we test a WKB formula for the imaginary part of the resonance in the discrete spectrum of a three-well potential.Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Garcia, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaCzech Technical University2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64296Fernández, Francisco Marcelo; Garcia, Javier; Highly accurate calculation of the real and complex eigenvalues of one-dimensional anharmonic oscillators; Czech Technical University; Acta Polytechnica; 57; 6; 1-2017; 391-3981210-27091805-2363CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ojs.cvut.cz/ojs/index.php/ap/article/view/4339info:eu-repo/semantics/altIdentifier/doi/10.14311/AP.2017.57.0391info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:29:34Zoai:ri.conicet.gov.ar:11336/64296instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:29:34.894CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Highly accurate calculation of the real and complex eigenvalues of one-dimensional anharmonic oscillators
title Highly accurate calculation of the real and complex eigenvalues of one-dimensional anharmonic oscillators
spellingShingle Highly accurate calculation of the real and complex eigenvalues of one-dimensional anharmonic oscillators
Fernández, Francisco Marcelo
ANHARMONIC OSCILLATORS
BOUND STATES
RESONANCES
RICCATI-PADÉ METHOD
WKB ASYMPTOTIC EXPRESSION
title_short Highly accurate calculation of the real and complex eigenvalues of one-dimensional anharmonic oscillators
title_full Highly accurate calculation of the real and complex eigenvalues of one-dimensional anharmonic oscillators
title_fullStr Highly accurate calculation of the real and complex eigenvalues of one-dimensional anharmonic oscillators
title_full_unstemmed Highly accurate calculation of the real and complex eigenvalues of one-dimensional anharmonic oscillators
title_sort Highly accurate calculation of the real and complex eigenvalues of one-dimensional anharmonic oscillators
dc.creator.none.fl_str_mv Fernández, Francisco Marcelo
Garcia, Javier
author Fernández, Francisco Marcelo
author_facet Fernández, Francisco Marcelo
Garcia, Javier
author_role author
author2 Garcia, Javier
author2_role author
dc.subject.none.fl_str_mv ANHARMONIC OSCILLATORS
BOUND STATES
RESONANCES
RICCATI-PADÉ METHOD
WKB ASYMPTOTIC EXPRESSION
topic ANHARMONIC OSCILLATORS
BOUND STATES
RESONANCES
RICCATI-PADÉ METHOD
WKB ASYMPTOTIC EXPRESSION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We draw attention on the fact that the Riccati-Padé method developed some time ago enables the accurate calculation of bound-state eigenvalues as well as of resonances embedded either in the continuum or in the discrete spectrum. We apply the approach to several one-dimensional models that exhibit different kind of spectra. In particular we test a WKB formula for the imaginary part of the resonance in the discrete spectrum of a three-well potential.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Garcia, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
description We draw attention on the fact that the Riccati-Padé method developed some time ago enables the accurate calculation of bound-state eigenvalues as well as of resonances embedded either in the continuum or in the discrete spectrum. We apply the approach to several one-dimensional models that exhibit different kind of spectra. In particular we test a WKB formula for the imaginary part of the resonance in the discrete spectrum of a three-well potential.
publishDate 2017
dc.date.none.fl_str_mv 2017-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/64296
Fernández, Francisco Marcelo; Garcia, Javier; Highly accurate calculation of the real and complex eigenvalues of one-dimensional anharmonic oscillators; Czech Technical University; Acta Polytechnica; 57; 6; 1-2017; 391-398
1210-2709
1805-2363
CONICET Digital
CONICET
url http://hdl.handle.net/11336/64296
identifier_str_mv Fernández, Francisco Marcelo; Garcia, Javier; Highly accurate calculation of the real and complex eigenvalues of one-dimensional anharmonic oscillators; Czech Technical University; Acta Polytechnica; 57; 6; 1-2017; 391-398
1210-2709
1805-2363
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ojs.cvut.cz/ojs/index.php/ap/article/view/4339
info:eu-repo/semantics/altIdentifier/doi/10.14311/AP.2017.57.0391
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Czech Technical University
publisher.none.fl_str_mv Czech Technical University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082767322873856
score 13.22299