Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments
- Autores
- Fraire, Juan Carlos; Pérez, Luis Alberto; Coronado, Eduardo A.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, we report a simple strategy to obtain ultrasensitive SERS nanostructures by selfassembly and bioconjugation of Au nanospheres (NSs). Homodimer aggregates with an interparticle gap of around 8 nm are generated in aqueous dispersions by the highly specific molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 107 and the capability to detect biotin concentrations lower than 1012 M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (105) than using random aggregates (around 104). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be ?trapped? by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out.The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations.fic molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 107 and the capability to detect biotin concentrations lower than 1012 M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (105) than using random aggregates (around 104). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be ?trapped? by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out.The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations.
Fil: Fraire, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Pérez, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina - Materia
-
PLASMONICS
NANOPARTICLES
BIOCONJUGATION
SERS SENSING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/273851
Ver los metadatos del registro completo
| id |
CONICETDig_02bbbfaf85968732e0a63ace2d3f487d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/273851 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and ExperimentsFraire, Juan CarlosPérez, Luis AlbertoCoronado, Eduardo A.PLASMONICSNANOPARTICLESBIOCONJUGATIONSERS SENSINGhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2In this work, we report a simple strategy to obtain ultrasensitive SERS nanostructures by selfassembly and bioconjugation of Au nanospheres (NSs). Homodimer aggregates with an interparticle gap of around 8 nm are generated in aqueous dispersions by the highly specific molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 107 and the capability to detect biotin concentrations lower than 1012 M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (105) than using random aggregates (around 104). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be ?trapped? by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out.The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations.fic molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 107 and the capability to detect biotin concentrations lower than 1012 M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (105) than using random aggregates (around 104). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be ?trapped? by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out.The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations.Fil: Fraire, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Pérez, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaAmerican Chemical Society2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/273851Fraire, Juan Carlos; Pérez, Luis Alberto; Coronado, Eduardo A.; Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments; American Chemical Society; ACS Nano; 6; 4; 4-2012; 3441-34521936-0851CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/nn300474pinfo:eu-repo/semantics/altIdentifier/doi/10.1021/nn300474pinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:34:02Zoai:ri.conicet.gov.ar:11336/273851instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:34:03.077CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments |
| title |
Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments |
| spellingShingle |
Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments Fraire, Juan Carlos PLASMONICS NANOPARTICLES BIOCONJUGATION SERS SENSING |
| title_short |
Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments |
| title_full |
Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments |
| title_fullStr |
Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments |
| title_full_unstemmed |
Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments |
| title_sort |
Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments |
| dc.creator.none.fl_str_mv |
Fraire, Juan Carlos Pérez, Luis Alberto Coronado, Eduardo A. |
| author |
Fraire, Juan Carlos |
| author_facet |
Fraire, Juan Carlos Pérez, Luis Alberto Coronado, Eduardo A. |
| author_role |
author |
| author2 |
Pérez, Luis Alberto Coronado, Eduardo A. |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
PLASMONICS NANOPARTICLES BIOCONJUGATION SERS SENSING |
| topic |
PLASMONICS NANOPARTICLES BIOCONJUGATION SERS SENSING |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
In this work, we report a simple strategy to obtain ultrasensitive SERS nanostructures by selfassembly and bioconjugation of Au nanospheres (NSs). Homodimer aggregates with an interparticle gap of around 8 nm are generated in aqueous dispersions by the highly specific molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 107 and the capability to detect biotin concentrations lower than 1012 M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (105) than using random aggregates (around 104). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be ?trapped? by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out.The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations.fic molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 107 and the capability to detect biotin concentrations lower than 1012 M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (105) than using random aggregates (around 104). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be ?trapped? by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out.The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations. Fil: Fraire, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina Fil: Pérez, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina Fil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina |
| description |
In this work, we report a simple strategy to obtain ultrasensitive SERS nanostructures by selfassembly and bioconjugation of Au nanospheres (NSs). Homodimer aggregates with an interparticle gap of around 8 nm are generated in aqueous dispersions by the highly specific molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 107 and the capability to detect biotin concentrations lower than 1012 M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (105) than using random aggregates (around 104). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be ?trapped? by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out.The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations.fic molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 107 and the capability to detect biotin concentrations lower than 1012 M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (105) than using random aggregates (around 104). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be ?trapped? by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out.The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/273851 Fraire, Juan Carlos; Pérez, Luis Alberto; Coronado, Eduardo A.; Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments; American Chemical Society; ACS Nano; 6; 4; 4-2012; 3441-3452 1936-0851 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/273851 |
| identifier_str_mv |
Fraire, Juan Carlos; Pérez, Luis Alberto; Coronado, Eduardo A.; Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments; American Chemical Society; ACS Nano; 6; 4; 4-2012; 3441-3452 1936-0851 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/nn300474p info:eu-repo/semantics/altIdentifier/doi/10.1021/nn300474p |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Chemical Society |
| publisher.none.fl_str_mv |
American Chemical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597096906620928 |
| score |
12.976206 |