Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments

Autores
Fraire, Juan Carlos; Pérez, Luis Alberto; Coronado, Eduardo A.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work, we report a simple strategy to obtain ultrasensitive SERS nanostructures by selfassembly and bioconjugation of Au nanospheres (NSs). Homodimer aggregates with an interparticle gap of around 8 nm are generated in aqueous dispersions by the highly specific molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 107 and the capability to detect biotin concentrations lower than  1012 M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (105) than using random aggregates (around 104). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be ?trapped? by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out.The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations.fic molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 107 and the capability to detect biotin concentrations lower than  1012 M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (105) than using random aggregates (around 104). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be ?trapped? by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out.The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations.
Fil: Fraire, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Pérez, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Materia
PLASMONICS
NANOPARTICLES
BIOCONJUGATION
SERS SENSING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/273851

id CONICETDig_02bbbfaf85968732e0a63ace2d3f487d
oai_identifier_str oai:ri.conicet.gov.ar:11336/273851
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and ExperimentsFraire, Juan CarlosPérez, Luis AlbertoCoronado, Eduardo A.PLASMONICSNANOPARTICLESBIOCONJUGATIONSERS SENSINGhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2In this work, we report a simple strategy to obtain ultrasensitive SERS nanostructures by selfassembly and bioconjugation of Au nanospheres (NSs). Homodimer aggregates with an interparticle gap of around 8 nm are generated in aqueous dispersions by the highly specific molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 107 and the capability to detect biotin concentrations lower than  1012 M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (105) than using random aggregates (around 104). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be ?trapped? by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out.The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations.fic molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 107 and the capability to detect biotin concentrations lower than  1012 M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (105) than using random aggregates (around 104). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be ?trapped? by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out.The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations.Fil: Fraire, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Pérez, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaAmerican Chemical Society2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/273851Fraire, Juan Carlos; Pérez, Luis Alberto; Coronado, Eduardo A.; Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments; American Chemical Society; ACS Nano; 6; 4; 4-2012; 3441-34521936-0851CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/nn300474pinfo:eu-repo/semantics/altIdentifier/doi/10.1021/nn300474pinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:34:02Zoai:ri.conicet.gov.ar:11336/273851instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:34:03.077CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments
title Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments
spellingShingle Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments
Fraire, Juan Carlos
PLASMONICS
NANOPARTICLES
BIOCONJUGATION
SERS SENSING
title_short Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments
title_full Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments
title_fullStr Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments
title_full_unstemmed Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments
title_sort Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments
dc.creator.none.fl_str_mv Fraire, Juan Carlos
Pérez, Luis Alberto
Coronado, Eduardo A.
author Fraire, Juan Carlos
author_facet Fraire, Juan Carlos
Pérez, Luis Alberto
Coronado, Eduardo A.
author_role author
author2 Pérez, Luis Alberto
Coronado, Eduardo A.
author2_role author
author
dc.subject.none.fl_str_mv PLASMONICS
NANOPARTICLES
BIOCONJUGATION
SERS SENSING
topic PLASMONICS
NANOPARTICLES
BIOCONJUGATION
SERS SENSING
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this work, we report a simple strategy to obtain ultrasensitive SERS nanostructures by selfassembly and bioconjugation of Au nanospheres (NSs). Homodimer aggregates with an interparticle gap of around 8 nm are generated in aqueous dispersions by the highly specific molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 107 and the capability to detect biotin concentrations lower than  1012 M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (105) than using random aggregates (around 104). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be ?trapped? by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out.The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations.fic molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 107 and the capability to detect biotin concentrations lower than  1012 M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (105) than using random aggregates (around 104). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be ?trapped? by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out.The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations.
Fil: Fraire, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Pérez, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
description In this work, we report a simple strategy to obtain ultrasensitive SERS nanostructures by selfassembly and bioconjugation of Au nanospheres (NSs). Homodimer aggregates with an interparticle gap of around 8 nm are generated in aqueous dispersions by the highly specific molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 107 and the capability to detect biotin concentrations lower than  1012 M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (105) than using random aggregates (around 104). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be ?trapped? by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out.The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations.fic molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 107 and the capability to detect biotin concentrations lower than  1012 M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (105) than using random aggregates (around 104). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be ?trapped? by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out.The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations.
publishDate 2012
dc.date.none.fl_str_mv 2012-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/273851
Fraire, Juan Carlos; Pérez, Luis Alberto; Coronado, Eduardo A.; Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments; American Chemical Society; ACS Nano; 6; 4; 4-2012; 3441-3452
1936-0851
CONICET Digital
CONICET
url http://hdl.handle.net/11336/273851
identifier_str_mv Fraire, Juan Carlos; Pérez, Luis Alberto; Coronado, Eduardo A.; Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments; American Chemical Society; ACS Nano; 6; 4; 4-2012; 3441-3452
1936-0851
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/nn300474p
info:eu-repo/semantics/altIdentifier/doi/10.1021/nn300474p
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848597096906620928
score 12.976206