The nature of transition circumstellar disks. III. Perseus, Taurus, and Auriga
- Autores
- Cieza, Lucas A.; Schreiber, Matthias R.; Romero, Gisela Andrea; Williams, Jonathan P.; Rebassa Mansergas, Alberto; Merín, Bruno
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- As part of an ongoing program aiming to characterize a large number of Spitzer-selected transition disks (disks with reduced levels of near-IR and/or mid-IR excess emission), we have obtained (sub)millimeter wavelength photometry, high-resolution optical spectroscopy, and adaptive optics near-infrared imaging for a sample of 31 transition objects located in the Perseus, Taurus, and Auriga molecular clouds. We use these ground-based data to estimate disk masses, multiplicity, and accretion rates in order to investigate the mechanisms potentially responsible for their inner holes. Following our previous studies in other regions, we combine disk masses, accretion rates, and multiplicity data with other information, such as spectral energy distribution morphology and fractional disk luminosity, to classify the disks as strong candidates for the following categories: grain-growth-dominated disks (seven objects), giant planet-forming disks (six objects), photoevaporating disks (seven objects), debris disks (11 objects), and cicumbinary disks (one object, which was also classified as a photoevaporating disk). Combining our sample of 31 transition disks with those from our previous studies results in a sample of 74 transition objects that have been selected, characterized, and classified in a homogenous way. We discuss this combined high-quality sample in the context of the current paradigm of the evolution and dissipation of protoplanetary disks and use its properties to constrain different aspects of the key processes driving their evolution. We find that the age distribution of disks that are likely to harbor recently formed giant planets favors core accretion as the main planet formation mechanism and a 2-3Myr formation timescale.
Fil: Cieza, Lucas A.. University of Hawaii at Manoa; Estados Unidos
Fil: Schreiber, Matthias R.. Universidad de Valparaíso; Chile
Fil: Romero, Gisela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Universidad de Valparaíso; Chile
Fil: Williams, Jonathan P.. University of Hawaii at Manoa; Estados Unidos
Fil: Rebassa Mansergas, Alberto. Universidad de Valparaíso; Chile
Fil: Merín, Bruno. Agencia Espacial Europea. XMM-Newton Science Operations Centre; España - Materia
-
Binaries: General
Circumstellar Matter
Protoplanetary Disks
Stars: Pre-Main Sequence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/80530
Ver los metadatos del registro completo
id |
CONICETDig_02b3d9de982ffa830a632b63617b73d6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/80530 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The nature of transition circumstellar disks. III. Perseus, Taurus, and AurigaCieza, Lucas A.Schreiber, Matthias R.Romero, Gisela AndreaWilliams, Jonathan P.Rebassa Mansergas, AlbertoMerín, BrunoBinaries: GeneralCircumstellar MatterProtoplanetary DisksStars: Pre-Main Sequencehttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1As part of an ongoing program aiming to characterize a large number of Spitzer-selected transition disks (disks with reduced levels of near-IR and/or mid-IR excess emission), we have obtained (sub)millimeter wavelength photometry, high-resolution optical spectroscopy, and adaptive optics near-infrared imaging for a sample of 31 transition objects located in the Perseus, Taurus, and Auriga molecular clouds. We use these ground-based data to estimate disk masses, multiplicity, and accretion rates in order to investigate the mechanisms potentially responsible for their inner holes. Following our previous studies in other regions, we combine disk masses, accretion rates, and multiplicity data with other information, such as spectral energy distribution morphology and fractional disk luminosity, to classify the disks as strong candidates for the following categories: grain-growth-dominated disks (seven objects), giant planet-forming disks (six objects), photoevaporating disks (seven objects), debris disks (11 objects), and cicumbinary disks (one object, which was also classified as a photoevaporating disk). Combining our sample of 31 transition disks with those from our previous studies results in a sample of 74 transition objects that have been selected, characterized, and classified in a homogenous way. We discuss this combined high-quality sample in the context of the current paradigm of the evolution and dissipation of protoplanetary disks and use its properties to constrain different aspects of the key processes driving their evolution. We find that the age distribution of disks that are likely to harbor recently formed giant planets favors core accretion as the main planet formation mechanism and a 2-3Myr formation timescale.Fil: Cieza, Lucas A.. University of Hawaii at Manoa; Estados UnidosFil: Schreiber, Matthias R.. Universidad de Valparaíso; ChileFil: Romero, Gisela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Universidad de Valparaíso; ChileFil: Williams, Jonathan P.. University of Hawaii at Manoa; Estados UnidosFil: Rebassa Mansergas, Alberto. Universidad de Valparaíso; ChileFil: Merín, Bruno. Agencia Espacial Europea. XMM-Newton Science Operations Centre; EspañaIOP Publishing2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80530Cieza, Lucas A.; Schreiber, Matthias R.; Romero, Gisela Andrea; Williams, Jonathan P.; Rebassa Mansergas, Alberto; et al.; The nature of transition circumstellar disks. III. Perseus, Taurus, and Auriga; IOP Publishing; Astrophysical Journal; 750; 2; 5-2012; 157-1810004-637XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/750/2/157info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0004-637X/750/2/157info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:05:53Zoai:ri.conicet.gov.ar:11336/80530instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:05:54.172CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The nature of transition circumstellar disks. III. Perseus, Taurus, and Auriga |
title |
The nature of transition circumstellar disks. III. Perseus, Taurus, and Auriga |
spellingShingle |
The nature of transition circumstellar disks. III. Perseus, Taurus, and Auriga Cieza, Lucas A. Binaries: General Circumstellar Matter Protoplanetary Disks Stars: Pre-Main Sequence |
title_short |
The nature of transition circumstellar disks. III. Perseus, Taurus, and Auriga |
title_full |
The nature of transition circumstellar disks. III. Perseus, Taurus, and Auriga |
title_fullStr |
The nature of transition circumstellar disks. III. Perseus, Taurus, and Auriga |
title_full_unstemmed |
The nature of transition circumstellar disks. III. Perseus, Taurus, and Auriga |
title_sort |
The nature of transition circumstellar disks. III. Perseus, Taurus, and Auriga |
dc.creator.none.fl_str_mv |
Cieza, Lucas A. Schreiber, Matthias R. Romero, Gisela Andrea Williams, Jonathan P. Rebassa Mansergas, Alberto Merín, Bruno |
author |
Cieza, Lucas A. |
author_facet |
Cieza, Lucas A. Schreiber, Matthias R. Romero, Gisela Andrea Williams, Jonathan P. Rebassa Mansergas, Alberto Merín, Bruno |
author_role |
author |
author2 |
Schreiber, Matthias R. Romero, Gisela Andrea Williams, Jonathan P. Rebassa Mansergas, Alberto Merín, Bruno |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Binaries: General Circumstellar Matter Protoplanetary Disks Stars: Pre-Main Sequence |
topic |
Binaries: General Circumstellar Matter Protoplanetary Disks Stars: Pre-Main Sequence |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
As part of an ongoing program aiming to characterize a large number of Spitzer-selected transition disks (disks with reduced levels of near-IR and/or mid-IR excess emission), we have obtained (sub)millimeter wavelength photometry, high-resolution optical spectroscopy, and adaptive optics near-infrared imaging for a sample of 31 transition objects located in the Perseus, Taurus, and Auriga molecular clouds. We use these ground-based data to estimate disk masses, multiplicity, and accretion rates in order to investigate the mechanisms potentially responsible for their inner holes. Following our previous studies in other regions, we combine disk masses, accretion rates, and multiplicity data with other information, such as spectral energy distribution morphology and fractional disk luminosity, to classify the disks as strong candidates for the following categories: grain-growth-dominated disks (seven objects), giant planet-forming disks (six objects), photoevaporating disks (seven objects), debris disks (11 objects), and cicumbinary disks (one object, which was also classified as a photoevaporating disk). Combining our sample of 31 transition disks with those from our previous studies results in a sample of 74 transition objects that have been selected, characterized, and classified in a homogenous way. We discuss this combined high-quality sample in the context of the current paradigm of the evolution and dissipation of protoplanetary disks and use its properties to constrain different aspects of the key processes driving their evolution. We find that the age distribution of disks that are likely to harbor recently formed giant planets favors core accretion as the main planet formation mechanism and a 2-3Myr formation timescale. Fil: Cieza, Lucas A.. University of Hawaii at Manoa; Estados Unidos Fil: Schreiber, Matthias R.. Universidad de Valparaíso; Chile Fil: Romero, Gisela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Universidad de Valparaíso; Chile Fil: Williams, Jonathan P.. University of Hawaii at Manoa; Estados Unidos Fil: Rebassa Mansergas, Alberto. Universidad de Valparaíso; Chile Fil: Merín, Bruno. Agencia Espacial Europea. XMM-Newton Science Operations Centre; España |
description |
As part of an ongoing program aiming to characterize a large number of Spitzer-selected transition disks (disks with reduced levels of near-IR and/or mid-IR excess emission), we have obtained (sub)millimeter wavelength photometry, high-resolution optical spectroscopy, and adaptive optics near-infrared imaging for a sample of 31 transition objects located in the Perseus, Taurus, and Auriga molecular clouds. We use these ground-based data to estimate disk masses, multiplicity, and accretion rates in order to investigate the mechanisms potentially responsible for their inner holes. Following our previous studies in other regions, we combine disk masses, accretion rates, and multiplicity data with other information, such as spectral energy distribution morphology and fractional disk luminosity, to classify the disks as strong candidates for the following categories: grain-growth-dominated disks (seven objects), giant planet-forming disks (six objects), photoevaporating disks (seven objects), debris disks (11 objects), and cicumbinary disks (one object, which was also classified as a photoevaporating disk). Combining our sample of 31 transition disks with those from our previous studies results in a sample of 74 transition objects that have been selected, characterized, and classified in a homogenous way. We discuss this combined high-quality sample in the context of the current paradigm of the evolution and dissipation of protoplanetary disks and use its properties to constrain different aspects of the key processes driving their evolution. We find that the age distribution of disks that are likely to harbor recently formed giant planets favors core accretion as the main planet formation mechanism and a 2-3Myr formation timescale. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/80530 Cieza, Lucas A.; Schreiber, Matthias R.; Romero, Gisela Andrea; Williams, Jonathan P.; Rebassa Mansergas, Alberto; et al.; The nature of transition circumstellar disks. III. Perseus, Taurus, and Auriga; IOP Publishing; Astrophysical Journal; 750; 2; 5-2012; 157-181 0004-637X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/80530 |
identifier_str_mv |
Cieza, Lucas A.; Schreiber, Matthias R.; Romero, Gisela Andrea; Williams, Jonathan P.; Rebassa Mansergas, Alberto; et al.; The nature of transition circumstellar disks. III. Perseus, Taurus, and Auriga; IOP Publishing; Astrophysical Journal; 750; 2; 5-2012; 157-181 0004-637X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/750/2/157 info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0004-637X/750/2/157 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980230412632064 |
score |
12.993085 |