Morphological characterization of ponds and tidal courses in coastal wetlands using Google Earth imagery
- Autores
- Revollo Sarmiento, Gisela Noelia; Revollo Sarmiento, Natalia Veronica; Delrieux, Claudio Augusto; Perillo, Gerardo Miguel E.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Ponds and tidal courses are significant landforms that frequently arise in marshes and tidal flats environments. An understanding of their development and permanence is relevant to determine future dynamic processes that alter tidal flats and salt marshes environments, such as changes in the sea level, increase in the wave activity, and some other variations associated to the climate change. Direct access for monitoring in these regions is complex, extremely expensive and not always feasible. Remote sensing imagery represents a monitoring alternative, but requires the research of specific image processing procedures to extract the information concerning to these environmental studies. In this work, we developed a methodology for assessing the relevant morphological parameters of ponds and tidal courses using Google Earth imagery. An automatic classifier identifies these landforms as such (accuracy over 86%), producing a shape descriptors dataset. Then, ponds and tidal courses in tidal flats are morphologically characterized, and their behavior is compared to the surrounding environment. Subsequent analysis found significant differences in morphological characteristics that arise independently of the marsh environmental conditions. The evidence suggests that the evolution processes of the depressions in salt flat environments are clearly different in comparison with salt marshes environments. In salt marshes, the permanence and evolution of the depressions is related to the age of marshes, whereas in tidal flats the dynamic processes and sediment input have influence on depressions evolution.
Fil: Revollo Sarmiento, Gisela Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Revollo Sarmiento, Natalia Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Perillo, Gerardo Miguel E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Geología; Argentina - Materia
-
CLASSIFICATION
DIGITAL IMAGE PROCESSING
PONDS
SHAPE DESCRIPTORS
TIDAL COURSES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/134092
Ver los metadatos del registro completo
id |
CONICETDig_01f601e37972597ae394528b74b4fa07 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/134092 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Morphological characterization of ponds and tidal courses in coastal wetlands using Google Earth imageryRevollo Sarmiento, Gisela NoeliaRevollo Sarmiento, Natalia VeronicaDelrieux, Claudio AugustoPerillo, Gerardo Miguel E.CLASSIFICATIONDIGITAL IMAGE PROCESSINGPONDSSHAPE DESCRIPTORSTIDAL COURSEShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Ponds and tidal courses are significant landforms that frequently arise in marshes and tidal flats environments. An understanding of their development and permanence is relevant to determine future dynamic processes that alter tidal flats and salt marshes environments, such as changes in the sea level, increase in the wave activity, and some other variations associated to the climate change. Direct access for monitoring in these regions is complex, extremely expensive and not always feasible. Remote sensing imagery represents a monitoring alternative, but requires the research of specific image processing procedures to extract the information concerning to these environmental studies. In this work, we developed a methodology for assessing the relevant morphological parameters of ponds and tidal courses using Google Earth imagery. An automatic classifier identifies these landforms as such (accuracy over 86%), producing a shape descriptors dataset. Then, ponds and tidal courses in tidal flats are morphologically characterized, and their behavior is compared to the surrounding environment. Subsequent analysis found significant differences in morphological characteristics that arise independently of the marsh environmental conditions. The evidence suggests that the evolution processes of the depressions in salt flat environments are clearly different in comparison with salt marshes environments. In salt marshes, the permanence and evolution of the depressions is related to the age of marshes, whereas in tidal flats the dynamic processes and sediment input have influence on depressions evolution.Fil: Revollo Sarmiento, Gisela Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Revollo Sarmiento, Natalia Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Perillo, Gerardo Miguel E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Geología; ArgentinaAcademic Press Ltd - Elsevier Science Ltd2020-09-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/134092Revollo Sarmiento, Gisela Noelia; Revollo Sarmiento, Natalia Veronica; Delrieux, Claudio Augusto; Perillo, Gerardo Miguel E.; Morphological characterization of ponds and tidal courses in coastal wetlands using Google Earth imagery; Academic Press Ltd - Elsevier Science Ltd; Estuarine, Coastal and Shelf Science; 246; 29-9-2020; 1-13; 1070410272-7714CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecss.2020.107041info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0272771420307721info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:10Zoai:ri.conicet.gov.ar:11336/134092instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:11.13CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Morphological characterization of ponds and tidal courses in coastal wetlands using Google Earth imagery |
title |
Morphological characterization of ponds and tidal courses in coastal wetlands using Google Earth imagery |
spellingShingle |
Morphological characterization of ponds and tidal courses in coastal wetlands using Google Earth imagery Revollo Sarmiento, Gisela Noelia CLASSIFICATION DIGITAL IMAGE PROCESSING PONDS SHAPE DESCRIPTORS TIDAL COURSES |
title_short |
Morphological characterization of ponds and tidal courses in coastal wetlands using Google Earth imagery |
title_full |
Morphological characterization of ponds and tidal courses in coastal wetlands using Google Earth imagery |
title_fullStr |
Morphological characterization of ponds and tidal courses in coastal wetlands using Google Earth imagery |
title_full_unstemmed |
Morphological characterization of ponds and tidal courses in coastal wetlands using Google Earth imagery |
title_sort |
Morphological characterization of ponds and tidal courses in coastal wetlands using Google Earth imagery |
dc.creator.none.fl_str_mv |
Revollo Sarmiento, Gisela Noelia Revollo Sarmiento, Natalia Veronica Delrieux, Claudio Augusto Perillo, Gerardo Miguel E. |
author |
Revollo Sarmiento, Gisela Noelia |
author_facet |
Revollo Sarmiento, Gisela Noelia Revollo Sarmiento, Natalia Veronica Delrieux, Claudio Augusto Perillo, Gerardo Miguel E. |
author_role |
author |
author2 |
Revollo Sarmiento, Natalia Veronica Delrieux, Claudio Augusto Perillo, Gerardo Miguel E. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CLASSIFICATION DIGITAL IMAGE PROCESSING PONDS SHAPE DESCRIPTORS TIDAL COURSES |
topic |
CLASSIFICATION DIGITAL IMAGE PROCESSING PONDS SHAPE DESCRIPTORS TIDAL COURSES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Ponds and tidal courses are significant landforms that frequently arise in marshes and tidal flats environments. An understanding of their development and permanence is relevant to determine future dynamic processes that alter tidal flats and salt marshes environments, such as changes in the sea level, increase in the wave activity, and some other variations associated to the climate change. Direct access for monitoring in these regions is complex, extremely expensive and not always feasible. Remote sensing imagery represents a monitoring alternative, but requires the research of specific image processing procedures to extract the information concerning to these environmental studies. In this work, we developed a methodology for assessing the relevant morphological parameters of ponds and tidal courses using Google Earth imagery. An automatic classifier identifies these landforms as such (accuracy over 86%), producing a shape descriptors dataset. Then, ponds and tidal courses in tidal flats are morphologically characterized, and their behavior is compared to the surrounding environment. Subsequent analysis found significant differences in morphological characteristics that arise independently of the marsh environmental conditions. The evidence suggests that the evolution processes of the depressions in salt flat environments are clearly different in comparison with salt marshes environments. In salt marshes, the permanence and evolution of the depressions is related to the age of marshes, whereas in tidal flats the dynamic processes and sediment input have influence on depressions evolution. Fil: Revollo Sarmiento, Gisela Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina Fil: Revollo Sarmiento, Natalia Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina Fil: Perillo, Gerardo Miguel E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Geología; Argentina |
description |
Ponds and tidal courses are significant landforms that frequently arise in marshes and tidal flats environments. An understanding of their development and permanence is relevant to determine future dynamic processes that alter tidal flats and salt marshes environments, such as changes in the sea level, increase in the wave activity, and some other variations associated to the climate change. Direct access for monitoring in these regions is complex, extremely expensive and not always feasible. Remote sensing imagery represents a monitoring alternative, but requires the research of specific image processing procedures to extract the information concerning to these environmental studies. In this work, we developed a methodology for assessing the relevant morphological parameters of ponds and tidal courses using Google Earth imagery. An automatic classifier identifies these landforms as such (accuracy over 86%), producing a shape descriptors dataset. Then, ponds and tidal courses in tidal flats are morphologically characterized, and their behavior is compared to the surrounding environment. Subsequent analysis found significant differences in morphological characteristics that arise independently of the marsh environmental conditions. The evidence suggests that the evolution processes of the depressions in salt flat environments are clearly different in comparison with salt marshes environments. In salt marshes, the permanence and evolution of the depressions is related to the age of marshes, whereas in tidal flats the dynamic processes and sediment input have influence on depressions evolution. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09-29 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/134092 Revollo Sarmiento, Gisela Noelia; Revollo Sarmiento, Natalia Veronica; Delrieux, Claudio Augusto; Perillo, Gerardo Miguel E.; Morphological characterization of ponds and tidal courses in coastal wetlands using Google Earth imagery; Academic Press Ltd - Elsevier Science Ltd; Estuarine, Coastal and Shelf Science; 246; 29-9-2020; 1-13; 107041 0272-7714 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/134092 |
identifier_str_mv |
Revollo Sarmiento, Gisela Noelia; Revollo Sarmiento, Natalia Veronica; Delrieux, Claudio Augusto; Perillo, Gerardo Miguel E.; Morphological characterization of ponds and tidal courses in coastal wetlands using Google Earth imagery; Academic Press Ltd - Elsevier Science Ltd; Estuarine, Coastal and Shelf Science; 246; 29-9-2020; 1-13; 107041 0272-7714 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecss.2020.107041 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0272771420307721 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613758140284928 |
score |
13.070432 |