On spectrally flowed local vertex operators in AdS3

Autores
Iguri, Sergio Manuel; Kovensky, Nicolas
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We provide a novel local definition for spectrally flowed vertex operators in the SL(2,R)WZW model, generalising the proposal of [1] for the singly-flowed case to all ω > 1. This allows us to establish the precise connection between the computation of correlators using the so-called spectral flow operator [1], and the methods introduced recently in [2] based on local Ward identities. We show that the auxiliary variable y used by the authors of [2] arises naturally from a point-splitting procedure in the space-time coordinate. The recursion relations satisfied by spectrally flowed correlators, which take the form of partial differential equations in y-space, then correspond to null-state conditions for generalised spectral flowed operators. We highlight the role of certain SL(2,R) discrete module isomorphisms in this context, and prove the validity of the conjecture put forward in [2] for y-space structure constants of three-point functions with arbitrary spectral flow charges.
Fil: Iguri, Sergio Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Universidad Abierta Interamericana; Argentina
Fil: Kovensky, Nicolas. Institut de Physique Théorique; Francia. Universite Paris-Saclay; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
String Theory
Spectral flow
Holography
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/218183

id CONICETDig_01c66a712509b812ac7fffa4a84fc720
oai_identifier_str oai:ri.conicet.gov.ar:11336/218183
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On spectrally flowed local vertex operators in AdS3Iguri, Sergio ManuelKovensky, NicolasString TheorySpectral flowHolographyhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We provide a novel local definition for spectrally flowed vertex operators in the SL(2,R)WZW model, generalising the proposal of [1] for the singly-flowed case to all ω > 1. This allows us to establish the precise connection between the computation of correlators using the so-called spectral flow operator [1], and the methods introduced recently in [2] based on local Ward identities. We show that the auxiliary variable y used by the authors of [2] arises naturally from a point-splitting procedure in the space-time coordinate. The recursion relations satisfied by spectrally flowed correlators, which take the form of partial differential equations in y-space, then correspond to null-state conditions for generalised spectral flowed operators. We highlight the role of certain SL(2,R) discrete module isomorphisms in this context, and prove the validity of the conjecture put forward in [2] for y-space structure constants of three-point functions with arbitrary spectral flow charges.Fil: Iguri, Sergio Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Universidad Abierta Interamericana; ArgentinaFil: Kovensky, Nicolas. Institut de Physique Théorique; Francia. Universite Paris-Saclay; . Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSciPost Foundation2022-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/218183Iguri, Sergio Manuel; Kovensky, Nicolas; On spectrally flowed local vertex operators in AdS3; SciPost Foundation; SciPost Physics; 13; 5; 11-2022; 1-242542-4653CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://scipost.org/10.21468/SciPostPhys.13.5.115info:eu-repo/semantics/altIdentifier/doi/10.21468/SciPostPhys.13.5.115info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:18Zoai:ri.conicet.gov.ar:11336/218183instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:19.113CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On spectrally flowed local vertex operators in AdS3
title On spectrally flowed local vertex operators in AdS3
spellingShingle On spectrally flowed local vertex operators in AdS3
Iguri, Sergio Manuel
String Theory
Spectral flow
Holography
title_short On spectrally flowed local vertex operators in AdS3
title_full On spectrally flowed local vertex operators in AdS3
title_fullStr On spectrally flowed local vertex operators in AdS3
title_full_unstemmed On spectrally flowed local vertex operators in AdS3
title_sort On spectrally flowed local vertex operators in AdS3
dc.creator.none.fl_str_mv Iguri, Sergio Manuel
Kovensky, Nicolas
author Iguri, Sergio Manuel
author_facet Iguri, Sergio Manuel
Kovensky, Nicolas
author_role author
author2 Kovensky, Nicolas
author2_role author
dc.subject.none.fl_str_mv String Theory
Spectral flow
Holography
topic String Theory
Spectral flow
Holography
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We provide a novel local definition for spectrally flowed vertex operators in the SL(2,R)WZW model, generalising the proposal of [1] for the singly-flowed case to all ω > 1. This allows us to establish the precise connection between the computation of correlators using the so-called spectral flow operator [1], and the methods introduced recently in [2] based on local Ward identities. We show that the auxiliary variable y used by the authors of [2] arises naturally from a point-splitting procedure in the space-time coordinate. The recursion relations satisfied by spectrally flowed correlators, which take the form of partial differential equations in y-space, then correspond to null-state conditions for generalised spectral flowed operators. We highlight the role of certain SL(2,R) discrete module isomorphisms in this context, and prove the validity of the conjecture put forward in [2] for y-space structure constants of three-point functions with arbitrary spectral flow charges.
Fil: Iguri, Sergio Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Universidad Abierta Interamericana; Argentina
Fil: Kovensky, Nicolas. Institut de Physique Théorique; Francia. Universite Paris-Saclay; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We provide a novel local definition for spectrally flowed vertex operators in the SL(2,R)WZW model, generalising the proposal of [1] for the singly-flowed case to all ω > 1. This allows us to establish the precise connection between the computation of correlators using the so-called spectral flow operator [1], and the methods introduced recently in [2] based on local Ward identities. We show that the auxiliary variable y used by the authors of [2] arises naturally from a point-splitting procedure in the space-time coordinate. The recursion relations satisfied by spectrally flowed correlators, which take the form of partial differential equations in y-space, then correspond to null-state conditions for generalised spectral flowed operators. We highlight the role of certain SL(2,R) discrete module isomorphisms in this context, and prove the validity of the conjecture put forward in [2] for y-space structure constants of three-point functions with arbitrary spectral flow charges.
publishDate 2022
dc.date.none.fl_str_mv 2022-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/218183
Iguri, Sergio Manuel; Kovensky, Nicolas; On spectrally flowed local vertex operators in AdS3; SciPost Foundation; SciPost Physics; 13; 5; 11-2022; 1-24
2542-4653
CONICET Digital
CONICET
url http://hdl.handle.net/11336/218183
identifier_str_mv Iguri, Sergio Manuel; Kovensky, Nicolas; On spectrally flowed local vertex operators in AdS3; SciPost Foundation; SciPost Physics; 13; 5; 11-2022; 1-24
2542-4653
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://scipost.org/10.21468/SciPostPhys.13.5.115
info:eu-repo/semantics/altIdentifier/doi/10.21468/SciPostPhys.13.5.115
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv SciPost Foundation
publisher.none.fl_str_mv SciPost Foundation
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613363643973632
score 13.070432