Power laws in species’ biotic interaction networks can be inferred from co-occurrence data
- Autores
- Galiana, Nuria; Arnoldi, Jean François; Mestre, Frederico; Rozenfeld, Alejandro Fabian; Araújo, Miguel B.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Inferring biotic interactions from species co-occurrence patterns has long intrigued ecologists. Yet recent research revealed that co-occurrences may not reliably represent pairwise biotic interactions. We propose that examining network-level co-occurrence patterns can provide valuable insights into community structure and assembly. Analysing ten bipartite networks of empirically sampled biotic interactions and associated species spatial distribution, we find that approximately 20% of co-occurrences correspond to actual interactions. Moreover, the degree distribution shifts from exponential in co-occurrence networks to power laws in networks of biotic interactions. This shift results from a strong interplay between species’ biotic (their interacting partners) and abiotic (their environmental requirements) niches, and is accurately predicted by considering co-occurrence frequencies. Our work offers a mechanistic understanding of the assembly of ecological communities and suggests simple ways to infer fundamental biotic interaction network characteristics from co-occurrence data.
Fil: Galiana, Nuria. National Museum of Natural Sciences; España
Fil: Arnoldi, Jean François. No especifíca;
Fil: Mestre, Frederico. University of Évora; Portugal
Fil: Rozenfeld, Alejandro Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. Sede Olavarría del Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires | Universidad Nacional del Centro de la Pcia. de Bs.as. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. Sede Olavarría del Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina
Fil: Araújo, Miguel B.. University of Évora; Portugal - Materia
-
COMPLEX SYSTEMS
NETWORKS
INTERACTIONS
CO-OCURRENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/251748
Ver los metadatos del registro completo
id |
CONICETDig_00ee7072b2d4b39a8806c2a5a7c65430 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/251748 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Power laws in species’ biotic interaction networks can be inferred from co-occurrence dataGaliana, NuriaArnoldi, Jean FrançoisMestre, FredericoRozenfeld, Alejandro FabianAraújo, Miguel B.COMPLEX SYSTEMSNETWORKSINTERACTIONSCO-OCURRENCEhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Inferring biotic interactions from species co-occurrence patterns has long intrigued ecologists. Yet recent research revealed that co-occurrences may not reliably represent pairwise biotic interactions. We propose that examining network-level co-occurrence patterns can provide valuable insights into community structure and assembly. Analysing ten bipartite networks of empirically sampled biotic interactions and associated species spatial distribution, we find that approximately 20% of co-occurrences correspond to actual interactions. Moreover, the degree distribution shifts from exponential in co-occurrence networks to power laws in networks of biotic interactions. This shift results from a strong interplay between species’ biotic (their interacting partners) and abiotic (their environmental requirements) niches, and is accurately predicted by considering co-occurrence frequencies. Our work offers a mechanistic understanding of the assembly of ecological communities and suggests simple ways to infer fundamental biotic interaction network characteristics from co-occurrence data.Fil: Galiana, Nuria. National Museum of Natural Sciences; EspañaFil: Arnoldi, Jean François. No especifíca;Fil: Mestre, Frederico. University of Évora; PortugalFil: Rozenfeld, Alejandro Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. Sede Olavarría del Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires | Universidad Nacional del Centro de la Pcia. de Bs.as. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. Sede Olavarría del Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaFil: Araújo, Miguel B.. University of Évora; PortugalNature2023-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/251748Galiana, Nuria; Arnoldi, Jean François; Mestre, Frederico; Rozenfeld, Alejandro Fabian; Araújo, Miguel B.; Power laws in species’ biotic interaction networks can be inferred from co-occurrence data; Nature; Nature Ecology & Evolution; 8; 2; 11-2023; 209-2172397-334XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41559-023-02254-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:25Zoai:ri.conicet.gov.ar:11336/251748instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:25.875CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Power laws in species’ biotic interaction networks can be inferred from co-occurrence data |
title |
Power laws in species’ biotic interaction networks can be inferred from co-occurrence data |
spellingShingle |
Power laws in species’ biotic interaction networks can be inferred from co-occurrence data Galiana, Nuria COMPLEX SYSTEMS NETWORKS INTERACTIONS CO-OCURRENCE |
title_short |
Power laws in species’ biotic interaction networks can be inferred from co-occurrence data |
title_full |
Power laws in species’ biotic interaction networks can be inferred from co-occurrence data |
title_fullStr |
Power laws in species’ biotic interaction networks can be inferred from co-occurrence data |
title_full_unstemmed |
Power laws in species’ biotic interaction networks can be inferred from co-occurrence data |
title_sort |
Power laws in species’ biotic interaction networks can be inferred from co-occurrence data |
dc.creator.none.fl_str_mv |
Galiana, Nuria Arnoldi, Jean François Mestre, Frederico Rozenfeld, Alejandro Fabian Araújo, Miguel B. |
author |
Galiana, Nuria |
author_facet |
Galiana, Nuria Arnoldi, Jean François Mestre, Frederico Rozenfeld, Alejandro Fabian Araújo, Miguel B. |
author_role |
author |
author2 |
Arnoldi, Jean François Mestre, Frederico Rozenfeld, Alejandro Fabian Araújo, Miguel B. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
COMPLEX SYSTEMS NETWORKS INTERACTIONS CO-OCURRENCE |
topic |
COMPLEX SYSTEMS NETWORKS INTERACTIONS CO-OCURRENCE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Inferring biotic interactions from species co-occurrence patterns has long intrigued ecologists. Yet recent research revealed that co-occurrences may not reliably represent pairwise biotic interactions. We propose that examining network-level co-occurrence patterns can provide valuable insights into community structure and assembly. Analysing ten bipartite networks of empirically sampled biotic interactions and associated species spatial distribution, we find that approximately 20% of co-occurrences correspond to actual interactions. Moreover, the degree distribution shifts from exponential in co-occurrence networks to power laws in networks of biotic interactions. This shift results from a strong interplay between species’ biotic (their interacting partners) and abiotic (their environmental requirements) niches, and is accurately predicted by considering co-occurrence frequencies. Our work offers a mechanistic understanding of the assembly of ecological communities and suggests simple ways to infer fundamental biotic interaction network characteristics from co-occurrence data. Fil: Galiana, Nuria. National Museum of Natural Sciences; España Fil: Arnoldi, Jean François. No especifíca; Fil: Mestre, Frederico. University of Évora; Portugal Fil: Rozenfeld, Alejandro Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. Sede Olavarría del Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires | Universidad Nacional del Centro de la Pcia. de Bs.as. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. Sede Olavarría del Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina Fil: Araújo, Miguel B.. University of Évora; Portugal |
description |
Inferring biotic interactions from species co-occurrence patterns has long intrigued ecologists. Yet recent research revealed that co-occurrences may not reliably represent pairwise biotic interactions. We propose that examining network-level co-occurrence patterns can provide valuable insights into community structure and assembly. Analysing ten bipartite networks of empirically sampled biotic interactions and associated species spatial distribution, we find that approximately 20% of co-occurrences correspond to actual interactions. Moreover, the degree distribution shifts from exponential in co-occurrence networks to power laws in networks of biotic interactions. This shift results from a strong interplay between species’ biotic (their interacting partners) and abiotic (their environmental requirements) niches, and is accurately predicted by considering co-occurrence frequencies. Our work offers a mechanistic understanding of the assembly of ecological communities and suggests simple ways to infer fundamental biotic interaction network characteristics from co-occurrence data. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/251748 Galiana, Nuria; Arnoldi, Jean François; Mestre, Frederico; Rozenfeld, Alejandro Fabian; Araújo, Miguel B.; Power laws in species’ biotic interaction networks can be inferred from co-occurrence data; Nature; Nature Ecology & Evolution; 8; 2; 11-2023; 209-217 2397-334X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/251748 |
identifier_str_mv |
Galiana, Nuria; Arnoldi, Jean François; Mestre, Frederico; Rozenfeld, Alejandro Fabian; Araújo, Miguel B.; Power laws in species’ biotic interaction networks can be inferred from co-occurrence data; Nature; Nature Ecology & Evolution; 8; 2; 11-2023; 209-217 2397-334X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41559-023-02254-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature |
publisher.none.fl_str_mv |
Nature |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613530322468864 |
score |
13.070432 |